高显丽, 李嘉皓, 刘平. 泥河湾盆地下沙沟剖面磁组构特征分析与古湖环境变化研究[J]. 第四纪研究, 2022, 42(2): 562-576. doi: 10.11928/j.issn.1001-7410.2022.02.19
引用本文:
高显丽, 李嘉皓, 刘平. 泥河湾盆地下沙沟剖面磁组构特征分析与古湖环境变化研究[J]. 第四纪研究, 2022, 42(2): 562-576.
doi:
10.11928/j.issn.1001-7410.2022.02.19
高显丽, 李嘉皓, 刘平. 泥河湾盆地下沙沟剖面磁组构特征分析与古湖环境变化研究[J]. 第四纪研究, 2022, 42(2): 562-576. doi: 10.11928/j.issn.1001-7410.2022.02.19
GAO Xianli, LI Jiahao, LIU Ping. Characteristics analysis of magnetic fabric in Xiashagou section and the environmental changes of the Nihewan Lake[J]. Quaternary Sciences, 2022, 42(2): 562-576. doi: 10.11928/j.issn.1001-7410.2022.02.19
Citation:
GAO Xianli, LI Jiahao, LIU Ping. Characteristics analysis of magnetic fabric in Xiashagou section and the environmental changes of the Nihewan Lake[J].
Quaternary Sciences
, 2022, 42(2): 562-576.
doi:
10.11928/j.issn.1001-7410.2022.02.19
泥河湾盆地是中国北方很重要的沉积盆地,但由于盆地范围较广,局部地区环境变化差异较大,目前对泥河湾盆地的环境变化的认识还较为局限。文章通过对下沙沟剖面(厚度260 m)的河湖相沉积物进行详细的岩石磁学和磁组构研究,以尝试恢复下沙沟地区以及盆地东部古湖环境的演化过程,希望能够对泥河湾盆地环境变化提供一些新的指示。研究结果显示,样品中磁性矿物以PSD的磁铁矿颗粒为主,部分样品中含有少量赤铁矿。下沙沟剖面的沉积物受后期扰动很小,属于正常的重力沉积。沉积物磁面理(F)比磁线理(L)更发育,磁组构参数中磁面理F、各向异性度P
j
和水流速度函数Fs对环境变化的响应更加明显,古水流分析结果显示下沙沟地区没有长期稳定的流向,环境变化情况复杂。根据下沙沟剖面河湖相沉积物的磁性地层学年龄框架,以郝家台剖面顶部河湖相沉积物的年龄作为该剖面的顶界,得到了下沙沟剖面2.7~0.3 Ma的磁组构参数变化特征。结合岩性和磁组构参数变化的阶段性特征,将下沙沟地区以及盆地东部古湖环境演化历史分为5个阶段:2.7~2.4 Ma,古湖早期逐渐扩张,于早更新世达到了古湖发育的最盛时期,水体动荡,略不稳定;2.4~1.9 Ma,环境变化主要受气候因素影响,下沙沟地区水动力频繁变化,古湖经历了一次扩张和收缩;1.9~1.3 Ma,下沙沟地区的沉积主要受控于河流作用,盆地东部主要受到构造因素的影响,古湖处于持续收缩的阶段;1.3~0.9 Ma,下沙沟地区环境变化剧烈,受中更新世气候转型的影响较大,古湖东部也较大范围的受到中更新世气候转型的影响;0.9~0.3 Ma,全球气候变化剧烈,对古湖东部环境也有一定的影响,但整体还处于水体较为稳定的湖泊环境,古湖并未开始消亡。
泥河湾盆地
下沙沟剖面
Abstract:
The Nihewan Basin where there are thick fluvio-lacustrine sequences, are rich sources of mammalian faunas and Paleolithic sites, which is a very important sedimentary basin in North China. However, the information about the local regional environments in the Nihewan Basin is limited. In this study, 456 oriented samples were collected from the fluvio-lacustrine sequences of Xiashagou section(thickness 260 m) for detailed rock magnetic and magnetic fabric studies. We try to rebuild the environmental evolution process of Xiashagou area and then discuss the evolution of the ancient lake, and provide some new instructions for the environmental changes in Nihewan Basin. We selected 12 typical samples to measure hysteresis loops, isothermal remanence magnetization acquisition and its back-field demagnetization characteristics. The results show that the magnetic minerals in the fluvio-lacustrine sequences are mainly Pseudo-Single Domain(PSD) magnetite particles and a small amount of hematite. The results of magnetic fabric are typical for a primary sedimentary magnetic fabric, which show that the original sedimentary fabric has been preserved in the Xiashagou deposits.
The magnetic foliation (F) of sediments was found to be larger than the magnetic lineation (L). F and anisotropy degree(Pj) and the flow velocity function(Fs) in the magnetic fabric parameters are more obviously sensitive to environmental changes. There is no long-term stable flow direction in Xiashagou area. According to magnetostratigraphic age framework of fluvio-lacustrine sequences in Xiashagou section and the top age of fluvio-lacustrine sediments in the Haojiatai section, the age of the magnetic fabric parameters and magnetic susceptibility change curves in the Xiashagou section is from 2.7 Ma to 0.3 Ma. The analysis of the lithology and the periodic changes of the parameters of the Xiashagou section showed that the environment of the lake has undergone several significant changes during the period of 2.7~0.3 Ma, which occurred at 2.4 Ma, 1.9 Ma, 1.3 Ma and 0.9 Ma. So the environmental evolutions of the Nihewan lake are divided into five stages.
2.7~2.4 Ma, this period was a Pliocene-Pleistocene transition. The magnetic susceptibility and frequency susceptibility values were relatively high. The magnetic fabric parameters F, Pj, and Fs were relatively low. The hydrodynamics intensity increased and then decreased slightly in Xiashagou area, which was generally relatively small. The water of the Nihewan lake was turbulent and slightly unstabled where the sedimentary environments of rivers and lakes alternately appeared. The lake was in the early stage of gradual expansion, reaching the heyday of ancient lake development in the Early Pleistocene.
2.4~1.9 Ma, the magnetic fabric parameters F, Pj, and Fs changed frequently and slightly increased and then decreased during this period. The Nihewan lake experienced an expansion and contraction and the sedimentary environment of the ancient lake changed more frequently. The hydrodynamics in the marginal Xiashagou area was still constantly changing, and environmental changes were mainly controlled by the influence of climatic factors.
1.9~1.3 Ma, the ancient lake was still in the shrinking stage, and the intensity of sedimentary hydrodynamic changes. At this stage, the deposition in the Xiashagou area was mainly controlled by the rivers and the changes in the ancient lake environment were mainly controlled by structural factors.
1.3~0.9 Ma, the magnetic fabric parameters F, Pj, and Fs suddenly increased, which reached the maximum value of the entire section, and the oscillation amplitude was also the largest. During this period, the environment was affected by the climate transition in the Mid-Pleistocene. The environmental changes in the Xiashagou area responsed to this climate transition event, which also had a larger impact on the environment in the Nihewan area.
0.9~0.3 Ma, the magnetic fabric parameters F, Pj, and Fs were the lowest values of the entire section with almost constants. The sedimentary hydrodynamic force in the Xiashagou area was very small and stable. The global climate changing was severe, which had a certain impact on the environmental changes in the ancient lake, and the dying ancient lake did not start during this period.
Key words:
Nihewan Basin
Xiashagou section
magnetic fabrics
ancient lake environment
Figure 2.
Rock magnetic properties of typical samples from Xiashagou section.(a~d)The change curve of magnetic susceptibility with temperature, where solid line represents the heating curve, and dot-dashed line represents the cooling curve; (e~h)Hysteresis loop; (i~l)Cumulative Log-Gaussian(CLG)curve of the IRM acquisition curve, where squares represent the experimental IRM acquisition curve, and thin solid line represents the IRM value of CLG curve component 1, dot-dashed line represents the IRM value of component 2, and thick solid line represents total IRM fitting value
Figure 6.
The lithology of Xiashagou section (a), the sample's low-frequency magnetic susceptibility (b), relative frequency magnetic susceptibility (c), magnetic fabric parameter change curve with depth(d~k), stereographic projection of maximum axis and minimum axis(l~p)and rose diagram of maximum axis deflection angle(q~u)of magnetic susceptibility in each segment, the magnetic polarity column
[
14
]
(v)of Xiashagou section and the geomagnetic polarity time scale(GPTS)
[
55
]
(w)
卫奇, 吴秀杰. 许家窑-侯家窑遗址地层穷究[J]. 人类学学报, 2012, 31 (2): 151-163.
https://www.cnki.com.cn/Article/CJFDTOTAL-RLXB201202006.htm
Wei Qi, Wu Xiujie. Approach to the stratigraphy of Xujiayao-Houjiayao site in Nihewan Basin, China[J]. Acta Anthropologica Sinica, 2012, 31 (2): 151-163.
https://www.cnki.com.cn/Article/CJFDTOTAL-RLXB201202006.htm
袁宝印, 朱日祥, 田文来, 等. 泥河湾组的时代、地层划分和对比问题[J]. 中国科学(D辑), 1996, 26 (1): 67-73.
https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199601009.htm
Yuan Baoyin, Zhu Rixiang, Tian Wenlai, et al. The age, subdivision and correlation of Nihewan Group[J]. Science in China(Series D), 1996, 26 (1): 67-73.
https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199601009.htm
陈茅南, 王云生, 王淑芳, 等. 河北阳原-蔚县盆地泥河湾层的研究[J]. 中国地质科学院院报, 1987, (1): 149-160. CNKI: SUN: DQXB. 0.1987-01-012.
Chen Maonan, Wang Yunsheng, Wang Shufang, et al. Study of Nihewan beds in basin of Yangyuan-Yuxian Hobei Province, China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1987, (1): 149-160. CNKI: SUN: DQXB. 0.1987-01-012.
王红强, 邓成龙. 泥河湾层磁性地层学研究回顾[J]. 地球物理学进展, 2004, 19 (1): 26-35. doi:
10.3969/j.issn.1004-2903.2004.01.004
Wang Hongqiang, Deng Chenglong. A review of magnetostratigraphic studies on the Nihewan Formation[J]. Progress in Geophysics, 2004, 19 (1): 26-35. doi:
10.3969/j.issn.1004-2903.2004.01.004
刘锁旺, 甘家思. 汾渭裂谷系[J]. 地壳形变与地震, 1981, 1 (3): 110-123.
https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB198103014.htm
Liu Suowang, Gan Jiasi. Fenwei rift valley[J]. Crustal Deformation and Earthquake, 1981, 1 (3): 110-123.
https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB198103014.htm
邢作云, 赵斌, 涂美义, 等. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 2005, 12 (2): 247-262. doi:
10.3321/j.issn:1005-2321.2005.02.027
Xing Zuoyun, Zhao Bin, Tu Meiyi, et al. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 2005, 12 (2): 247-262. doi:
10.3321/j.issn:1005-2321.2005.02.027
袁宝印, 同号文, 温锐林, 等. 泥河湾古湖的形成机制及其与早期古人类生存环境的关系[J]. 地质力学学报, 2009, 15 (1): 77-87. doi:
10.3969/j.issn.1006-6616.2009.01.007
Yuan Baoyin, Tong Haowen, Wen Ruilin, et al. The formation mechanism of the Nihewan paleo-lake and its relationship with living environment for early ancient humen[J]. Journal of Geomechanics, 2009, 15 (1): 77-87. doi:
10.3969/j.issn.1006-6616.2009.01.007
庞其清, 翟大有, 赵筑簾, 等. 泥河湾盆地晚新生代微体古生物地层及环境演化的探讨[J]. 地质学报, 2015, 89 (5): 817-842. doi:
10.3969/j.issn.0001-5717.2015.05.001
Pang Qiqing, Zhai Dayou, Zhao Zhulian, et al. Late Cenozoic micropalaeontology in the Nihewan Basin and its implications for environmental evolution[J]. Acta Geologica Sinica, 2015, 89 (5): 817-842. doi:
10.3969/j.issn.0001-5717.2015.05.001
张兆群, 郑绍华, 刘建波. 泥河湾盆地上新世小哺乳动物生物地层学及相关问题讨论[J]. 古脊椎动物学报, 2003, 41 (4): 306-313. doi:
10.3969/j.issn.1000-3118.2003.04.005
Zhang Zhaoqun, Zheng Shaohua, Liu Jianbo. Pliocene mammalian biostratigraphy of Nihewan Basin, with comments on the stratigraphic division[J]. Vertebrata PalAsiatica, 2003, 41 (4): 306-313. doi:
10.3969/j.issn.1000-3118.2003.04.005
邓成龙, 郝青振, 郭正堂, 等. 中国第四纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49 (1): 330-352.
https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901015.htm
Deng Chenglong, Hao Qingzhen, Guo Zhengtang, et al. Quaternary integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 49 (1): 330-352.
https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901015.htm
刘平, 邓成龙, 李仕虎, 等. 泥河湾盆地下沙沟动物群的磁性地层学定年及其对泥河湾动物群的年代制约[J]. 第四纪研究, 2016, 36 (5): 1176-1190.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.05.13
Liu Ping, Deng Chenglong, Li Shihu, et al. Magnetstratigraphic dating of the Xiashagou fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China[J]. Quaternary Sciences, 2016, 36 (5): 1176-1190.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.05.13
朱日祥, 邓成龙, 潘永信. 泥河湾盆地磁性地层定年与早期人类演化[J]. 第四纪研究, 2007, 27 (6): 922-944. doi:
10.3321/j.issn:1001-7410.2007.06.008
http://www.dsjyj.com.cn/article/id/dsjyj_9192
Zhu Rixiang, Deng Chenglong, Pan Yongxin. Magnetochronology of the fluvio-lacustrine sequences in the Nihewan Basin and its implications for early human colonization of Northeast Asia[J]. Quaternary Sciences, 2007, 27 (6): 922-944. doi:
10.3321/j.issn:1001-7410.2007.06.008
http://www.dsjyj.com.cn/article/id/dsjyj_9192
唐锐枰, 葛俊逸, 庞海娇, 等. 泥河湾黑土沟剖面磁组构特征及古湖水文环境变化[J]. 科学通报, 2020, 65 (11): 1027-1045.
https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202011008.htm
Tang Ruiping, Ge Junyi, Pang Haijiao, et al. Paleohydro-climatic changes revealed by anisotropy of magnetic susceptibility at the Heitugou section, Nihewan Basin, and its influences on human's occupation[J]. Chinese Science Bulletin, 2020, 65 (11): 1027-1045.
https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202011008.htm
左天文, 成洪江, 刘平, 等. 泥河湾盆地后沟旧石器遗址的磁性地层学定年[J]. 中国科学: 地球科学, 2012, 42 (1): 94-102.
https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201201011.htm
Zuo Tianwen, Cheng Hongjiang, Liu Ping, et al. Magnetostratigraphic dating of the Hougou Paleolithic site in the Nihewan Basin, North China[J]. Science China: Earth Sciences, 2011, 54 (11): 1643-1650.
https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201201011.htm
赵海龙, 谭培阳, 孙雪峰, 等. 河北泥河湾盆地油房北旧石器地点的发现与研究[J]. 第四纪研究, 2021, 41 (1): 164-177.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.01.15
Zhao Hailong, Tan Peiyang, Sun Xuefeng, et al. Discovery and investigation of the Paleolithic Locality of Youfangbei, Nihewan Basin, Hebei Province[J]. Quaternary Sciences, 2021, 41 (1): 164-177.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.01.15
姜重昕, 沈中山, 秦华峰, 等. 泥河湾盆地虎头梁剖面河湖相沉积物磁组构特征及其环境意义[J]. 第四纪研究, 2017, 37 (6): 1320-1332.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.06.15
Jiang Chongxin, Shen Zhongshan, Qin Huafeng, et al. Magnetic fabrics of the Hutouliang fluvio-lacustrine sequence and its implication for sedimentary evolution in Nihewan Basin[J]. Quaternary Sciences, 2017, 37 (6): 1320-1332.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.06.15
张仲石, 燕青, 张冉, 等. 第四纪北半球冰盖发育与东亚气候的遥相关[J]. 第四纪研究, 2017, 37 (5): 1009-1016.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.05.08
Zhang Zhongshi, Yan Qing, Zhang Ran, et al. Teleconnection between Northern Hemisphere ice sheets and East Asian climate during Quaternary[J]. Quaternary Sciences, 2017, 37 (5): 1009-1016.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.05.08
郑洪波, 陈国成, 谢昕, 等. 南海晚第四纪陆源沉积: 粒度组成、动力控制及反映的东亚季风演化[J]. 第四纪研究, 2008, 28 (3): 414-424. doi:
10.3321/j.issn:1001-7410.2008.03.005
http://www.dsjyj.com.cn/article/id/dsjyj_8861
Zheng Hongbo, Chen Guocheng, Xie Xin, et al. Grain size distribution and dynamic control of Late Quaternary terrigenous sediments in the South China Sea and their implication for East Asian monsoon evolution[J]. Quaternary Sciences, 2008, 28 (3): 414-424. doi:
10.3321/j.issn:1001-7410.2008.03.005
http://www.dsjyj.com.cn/article/id/dsjyj_8861
马宗晋, 高庆华. 中国第四纪气候变化和未来北方干旱灾害分析[J]. 第四纪研究, 2004, 24 (3): 245-251. doi:
10.3321/j.issn:1001-7410.2004.03.001
http://www.dsjyj.com.cn/article/id/dsjyj_9080
Ma Zongjin, Gao Qinghua. Climate changes of China in the Quaternary period and analysis on drought disasters of North China in the future[J]. Quaternary Sciences, 2004, 24 (3): 245-251. doi:
10.3321/j.issn:1001-7410.2004.03.001
http://www.dsjyj.com.cn/article/id/dsjyj_9080
刘平, 靳春胜, 张崧, 等. 甘肃龙担早第四纪黄土-古土壤序列磁组构特征与古风场恢复[J]. 科学通报, 2007, 52 (24): 2922-2924. doi:
10.3321/j.issn:0023-074x.2007.24.018
Liu Ping, Jin Chunsheng, Zhang Song, et al. Magnetic fabric of Early Quaternary loess-paleosols of Longdan profile in Gansu Province and the reconstruction of the paleowind directions[J]. Chinese Science Bulletin, 2007, 52 (24): 2922-2924. doi:
10.3321/j.issn:0023-074x.2007.24.018
王云生. 河北阳原泥河湾层的沉积相及沉积系列[J]. 海洋地质与第四纪地质, 1989, 9 (1): 85-92.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198901020.htm
Wang Yunsheng. Sedimentary facies and succession of Nihewan Formation in Yangyuan County of Hebei Province[J]. Marine Geology & Quaternary Geology, 1989, 9 (1): 85-92.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198901020.htm
王喜生, 李学军. 等温剩磁获得曲线的累积对数高斯模型在泥河湾盆地磁组分识别中的运用[J]. 地学前缘, 2003, 10 (1): 163-169. doi:
10.3321/j.issn:1005-2321.2003.01.019
Wang Xisheng, Li Xuejun. Identification of remanence-carrying minerals of Nihewan samples, using the modeling of isothermal remanent magnetization acquisition curves by Cumulative Log Gaussian functions[J]. Earth Science Frontiers, 2003, 10 (1): 163-169. doi:
10.3321/j.issn:1005-2321.2003.01.019
王金海, 孟军海, 霍成胜, 等. 环境磁学参数简介[J]. 工程地球物理学报, 2012, 9 (4): 423-427. doi:
10.3969/j.issn.1672-7940.2012.04.010
Wang Jinhai, Meng Junhai, Huo Chengsheng, et al. A brief introduction to parameters used in environmental magnetism[J]. Chinese Journal of Engineering Geophysics, 2012, 9 (4): 423-427. doi:
10.3969/j.issn.1672-7940.2012.04.010
陈庆强, 李从先, 丛友滋. 沉积物磁组构与其动力沉积特征对应关系研究[J]. 科学通报, 1998, 43 (10): 1106-1109. doi:
10.3321/j.issn:0023-074X.1998.10.023
Chen Qingqiang, Li Congxian, Cong Youzi. Study on the correspondence between the magnetic fabric of sediment and its dynamic sedimentary characteristics[J]. Chinese Science Bulletin, 1998, 43 (10): 1106-1109. doi:
10.3321/j.issn:0023-074X.1998.10.023
杨晓强, 李华梅. 陆相断陷湖盆沉积物磁组构特征及环境意义-以泥河湾盆地为例[J]. 海洋地质与第四纪地质, 2000, 20 (3): 43-52.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200003009.htm
Yang Xiaoqiang, Li Huamei. Magnetic anisotropy and its environmental significance in limnal faulted basin-Taking the Nihewan Basin as an example[J]. Marine Geology & Quaternary Geology, 2000, 20 (3): 43-52.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200003009.htm
董进, 迟振卿, 王永, 等. 阳原泥河湾盆地台儿沟东剖面沉积相磁化率各向异性研究[J]. 地质论评, 2015, 61 (3): 681-693.
https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503026.htm
Dong Jin, Chi Zhenqing, Wang Yong, et al. Magnetic anisotropy study of sedimentary facies from eastern Taiergou section in the Nihewan Basin, Yangyuan[J]. Geological Review, 2015, 61 (3): 681-693.
https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503026.htm
孔艳芬, 孙蕗, 沈中山, 等. 临夏盆地新近纪郭泥沟剖面磁组构特征及其环境意义[J]. 地球物理学报, 2018, 61 (11): 4518-4529. doi:
10.6038/cjg2018M0245
Kong Yanfen, Sun Lu, Sheng Zhongshan, et al. Anisotropy of magnetic susceptibility of the Neogene Guonigou section in the Linxia Basin and its paleoenvironmental significance[J]. Chinese Journal of Geophysics, 2018, 61 (11): 4518-4529. doi:
10.6038/cjg2018M0245
刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52 (4): 1041-1048. doi:
10.3969/j.issn.0001-5733.2009.04.021
Liu Qingsong, Deng Chenglong. Magnetic susceptibility and its environmental significances[J]. Chinese Journal of Geophysics, 2009, 52 (4): 1041-1048. doi:
10.3969/j.issn.0001-5733.2009.04.021
刘鑫, 吕镔, 刘秀铭, 等. 湿润亚热带花岗岩风化壳发育红壤中不同类型磁赤铁矿及其成因[J]. 第四纪研究, 2021, 41 (1): 63-77.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.01.06
Liu Xin, Lü Bin, Liu Xiuming, et al. Different types of maghemite and their gensis in humid subtropical red soil derived from granite weathering crust[J]. Quaternary Sciences, 2021, 41 (1): 63-77.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.01.06
陈渠, 吕镔, 刘秀铭, 等. 伊犁典型黄土磁学与常量元素地球化学特征及其古气候意义[J]. 第四纪研究, 2021, 41 (6): 1632-1644.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.11
Chen Qu, Lü Bin, Liu Xiuming, et al. Rock magnetism and geochemical characteristics of major elements of typical loesss in the Ily Basin and their paleoclimatic significance[J]. Quaternary Sciences, 2021, 41 (6): 1632-1644.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.11
张志亮, 沈忠悦, 汪新, 等. 库车坳陷克拉苏河新生代沉积岩磁组构特征与古流向分析[J]. 地球物理学报, 2013, 56 (2): 567-578.
https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201302019.htm
Zhang Zhiliang, Shen Zhongyue, Wang Xin, et al. Characteristics of magnetic fabrics and paleocurrent directions of Cenozoic sediments in the Kelasu River, Kuqa depression[J]. Chinese Journal of Geophysics, 2013, 56 (2): 567-578.
https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201302019.htm
王军, 韩雪枫. 图尔卡纳湖生态环境和人类演化[J]. 河北师范大学学报(自然科学版), 2018, 42 (3): 243-250.
https://www.cnki.com.cn/Article/CJFDTOTAL-HBSZ201803011.htm
Wang Jun, Han Xuefeng. The ecological environment and human evolution of Lake Turkana[J]. Journal of Hebei Normal University(Natural Science Edition), 2018, 42 (3): 243-250.
https://www.cnki.com.cn/Article/CJFDTOTAL-HBSZ201803011.htm
蒲阳, 韩悦, 张虎才, 等. 鄂陵湖晚全新世沉积物记录的黄河源区气候环境变化[J]. 第四纪研究, 2021, 41 (4): 1000-1011.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.10
Pu Yang, Han Yue, Zhang Hucai, et al. Late Holocene climatic and environmental variation in the source area of the Yellow River recorded by sediments from the Lake Ngoring, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2021, 41 (4): 1000-1011.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.10
年小美, 周力平, 袁宝印. 泥河湾陆相沉积物光释光年代学研究及其对古湖泊演化的指示意义[J]. 第四纪研究, 2013, 33 (3): 403-414. doi:
10.3969/j.issn.1001-7410.2013.03.01
http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2013.03.01
Nian Xiaomei, Zhou Liping, Yuan Baoyin. Optically stimulated luminescence dating of terrestrial sediments in the Nihewan Basin and its implication for the evolution of ancient Nihewan Lake[J]. Quaternary Sciences, 2013, 33 (3): 403-414. doi:
10.3969/j.issn.1001-7410.2013.03.01
http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2013.03.01
杨晓强, 李华梅. 泥河湾盆地典型剖面沉积物磁化率特征及其意义[J]. 海洋地质与第四纪地质, 1999, 19 (1): 75-84.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.011.htm
Yang Xiaoqiang, Li Huamei. Characteristics and significance of the magnetic susceptibility of sediments in typical sections of the Nihewan Basin[J]. Marine Geology & Quaternary Geology, 1999, 19 (1): 75-84.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.011.htm
夏正楷. 大同-阳原盆地古泥河湾湖的岸线变化[J]. 地理研究, 1992, 11 (2): 52-59.
https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ199202006.htm
Xia Zhengkai. The study of the changes of ancient lake shore in the Datong-Yangyuan Basin[J]. Geographical Research, 1992, 11 (2): 52-59.
https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ199202006.htm
李月丛, 丁国强, 王永, 等. 泥河湾盆地早更新世(2.6-2.1 Ma) 植被和气候变化[J], 第四纪研究, 2018, 38 (4): 830-841.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.04.03
Li Yuecong, Ding Guoqiang, Wang Yong, et al. Early Pleistocene(2.6-2.1 Ma) vegetation and climate changes in the Nihewan Basin[J]. Quaternary Sciences, 2018, 38 (4): 830-841.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.04.03
胡云壮, 杨吉龙, 李影, 等. 3 Ma以来华北地区植被演化特征及其驱动因素[J]. 地质学报, 2020, 94 (10): 3120-3129. doi:
10.3969/j.issn.0001-5717.2020.10.022
Hu Yunzhuang, Yang Jilong, Li Ying, et al. Characteristics of vegetation evolution and its driving factors since 3 Ma in North China[J]. Acta Geologica Sinica, 2020, 94 (10): 3120-3129. doi:
10.3969/j.issn.0001-5717.2020.10.022
张肖剑, 靳立亚, Andrey Ganopolski, 等. 3 Ma以来轨道尺度东亚冬季风演化的模拟研究[J]. 第四纪研究, 2020, 40 (6): 1406-1417.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.06.03
Zhang Xiaojian, Jin Liya, Andrey Ganopolski, et al. Orbital variations of the East Asian winter monsoon during the past 3 Ma from a transient simulation[J]. Quaternary Sciences, 2020, 40 (6): 1406-1417.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.06.03
宋友桂, 方小敏, 石川尚人, 等. 1.5 Ma以来黄土高原风尘堆积的岩石磁学记录与中更新世气候转型[J]. 海洋地质与第四纪地质, 2005, 25 (3): 43-51.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200503006.htm
Song Yougui, Fang Xiaomin, Naoto Ishikawa, et al. Rock magnetic evidences of middle Pleistocene climate transition recorded in Chinese loess-paleosol sequence[J]. Marine Geology & Quaternary Geology, 2005, 25 (3): 43-51.
https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200503006.htm
王素素, 鹿化煜, 王珧, 等. 西宁黄土白云石和碳同位素记录的轨道尺度季风气候变化[J]. 第四纪研究, 2020, 40 (6): 1453-1463.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.06.07
Wang Susu, Lu Huayu, Wang Yao, et al. The monsoon variations at orbital timescale revealed by dolomite and stable carbon isotopic composition of loess from Xining(northeastern Qinghai-Tibetan Plateau)[J]. Quaternary Sciences, 2020, 40 (6): 1453-1463.
http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.06.07
Figure 1.
Topography map of the Nihewan Basin and the location of the places mentioned in this article, and the color bar on the right indicates the altitude
Figure 2.
Rock magnetic properties of typical samples from Xiashagou section.(a~d)The change curve of magnetic susceptibility with temperature, where solid line represents the heating curve, and dot-dashed line represents the cooling curve; (e~h)Hysteresis loop; (i~l)Cumulative Log-Gaussian(CLG)curve of the IRM acquisition curve, where squares represent the experimental IRM acquisition curve, and thin solid line represents the IRM value of CLG curve component 1, dot-dashed line represents the IRM value of component 2, and thick solid line represents total IRM fitting value
Figure 3.
Day-plot of typical samples of Xiashagou section
Figure 4.
Relation diagram of magnetic fabric parameters of Xiashagou section samples
Figure 5.
Stereographic projection of maximum axis and minimum axis of the magnetic susceptibility of Xiashagou section. Where hollow dots represent the projection point of maximum axis K
1
, and black dots represent the projection point of minimum axis K
3
Figure 6.
The lithology of Xiashagou section (a), the sample's low-frequency magnetic susceptibility (b), relative frequency magnetic susceptibility (c), magnetic fabric parameter change curve with depth(d~k), stereographic projection of maximum axis and minimum axis(l~p)and rose diagram of maximum axis deflection angle(q~u)of magnetic susceptibility in each segment, the magnetic polarity column
[
14
]
(v)of Xiashagou section and the geomagnetic polarity time scale(GPTS)
[
55
]
(w)
Figure 7.
(a)Deep-sea oxygen isotope curve
[
61
]
, (b)Normalized loess-paleosoil median particle size
[
62
]
, (c, d)variation curves of low-frequency magnetic susceptibility, relative frequency magnetic susceptibility, and(e~i) magnetic fabric parameters during 2.7~0.3 Ma in Xiashagou section