添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
收稿日期:2017-03-16
基金项目:国家自然科学基金项目(11301459);河北省自然科学基金项目(A2015203121)
作者简介:于春肖(1977—),女,河北平山人,教授,主要从事多极边界元法与应用研究,E-mail: [email protected] .
通信作者: 任翠环(1990—),女,河北衡水人,主要从事多极边界元法及相关算法研究,E-mail: [email protected] .
摘要 :对三维位势及位势梯度Legendre级数基本解进行了研究.利用Legendre函数性质和近远场划分准则,推导出位势及位势梯度基本解的截断误差表达式,并分析了有关截断指标对计算精度和计算效率的影响.
关键词 Legendre级数 基本解 位势 位势梯度 截断误差
Error Analysis of Fundamental Solutions in Legendre Series for Three-dimensional Potential Problems
YU Chunxiao REN Cuihuan HAO Xuejing Abstract : Potential and potential gradient fundamental solutions in Legendre series were studied for three-dimensional potential problems. By using properties of Legendre function and the near-far field partition criterion, truncation error expressions were derived for the potential and potential gradient fundamental solutions. In addition, the influence of truncation index on the computational accuracy and efficiency was analyzed.
Key words : Legendre series fundamental solution potential potential gradient truncation error

边界元法(BEM)是一种有效的工程数值计算方法,具有降维、精度高、灵活和速度快等特点.但因计算过程中形成的线性矩阵方程组的系数矩阵是非对称型满阵,边界元法对大规模的工程问题并不适用.基于BEM的上述问题,很多学者对其进行了深入的研究.文献[ 1 ]提出了快速多极展开法(FMM),此算法是一种快速求解积分方程的算法.之后,文献[ 2 ]将FMM广义极小残余法(GMRES)结合边界积分方程,得到快速多极边界元(FM-BEM),此方法使计算量和存储量降低到 O ( N ),在很大程度上提高了计算效率,被广泛应用到各个领域.文献[ 3 ]将快速多极展开技术用于高阶边界元法,降低了计算量和存储量.文献[ 4 - 5 ]对三维弹塑性摩擦接触多极边界元法进行了研究.并对三维轧制过程,建立了点面摩擦接触模型.近几年来,FM-BEM的应用更加广泛.文献[ 6 ]将有限元和FMM-BEM结合,来分析结构声学问题.文献[ 7 ]研究了FMM-BEM中基础Laplace方程非负解的存在性.

多极展开法 [ 8 ] 是一种近似方法,展开的阶数越多就越接近真实值.在实际中展开的阶数是有限的,也就是存在项数的截断.误差的估计方法有多种,如文献[ 9 ]提出了一种新的估计技巧.而本文依据勒让德函数的相关性质,对三维位势及位势梯度Legendre级数基本解展开的截断误差进行了推导,得出级数展开到 p 项时的误差估计式,从而得到控制精度的方法.

{c^i}{u^i}\left( x \right) + \int_\mathit{\Gamma } {{q^ * }\left( {x,y} \right)u\left( y \right){\rm{d}}\mathit{\Gamma }} = \int_\mathit{\Gamma } {{u^ * }\left( {x,y} \right)q\left( y \right){\rm{d}}\mathit{\Gamma }} ,

其中: x 为源点; y 为边界 Γ 上的任意一点; c i 为边界形状系数;式中所用到的基本解为 u * ( x , y ),

{u^ * }\left( {x,y} \right) = \frac{1}{{4{\rm{ \mathsf{ π} }}\left| {x - y} \right|}} = \frac{1}{{4{\rm{ \mathsf{ π} }}R}};{q^ * }\left( {x,y} \right) = \frac{{\partial {u^ * }\left( {x,y} \right)}}{{\partial n}},

其中: q * ( x , y )是 u * ( x , y )在 y 点处的外法线方向的导数; R 为观测点和源点间的距离; n 为边界 Γ 的外法矢.

位势基本解是1/ R 的函数.为适合多极展开法,将梯度表示为

{q^ * }\left( {x,y} \right) = - \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left[ {{\partial _1}\left( {\frac{1}{R}} \right){n_1} + {\partial _2}\left( {\frac{1}{R}} \right){n_2} + {\partial _3}\left( {\frac{1}{R}} \right){n_3}} \right] = - \frac{1}{{4{\rm{ \mathsf{ π} }}}}{\partial _m}\left( {\frac{1}{R}{n_m}} \right),

其中: m =1、2、3; ${{\partial }_{m}}$ 表示关于 x m 的偏导数.

R = \left\| {X - {X_i}} \right\| = \sqrt {\rho _i^2 + {r^2} - 2{\rho _i}r\cos \gamma } ,

则根据Legendre多项式的母函数得到 $\frac{1}{R}=\sum\limits_{n=0}^{\infty }{\frac{\rho _{i}^{2}}{{{r}^{n+1}}}{{P}_{n}}}$ (cos γ ).其中, γ OX i OX 之间的夹角,且满足

\cos\gamma = \cos\theta \cos{\alpha _i} + \sin \theta \sin {\alpha _i}\cos \left( {\varphi - {\beta _i}} \right).

定理1 在极坐标中场点和源点的距离为 R ,则基本解基于Legendre级数展开的截断误差为 ${E_p} < \frac{1}{{4{\rm{\pi }}a}}{\left( {\frac{1}{2}} \right)^{p + 1}}\frac{1}{{\sqrt {2p + 3} }}$ ,其中 a 表示点集的半径.

证明 由公式(2),可得

\begin{array}{l} {E_p} = \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left| {\frac{1}{R} - {{\left( {\frac{1}{R}} \right)}_p}} \right| = \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left| {\sum\limits_{n = 0}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \gamma } \right)} - \sum\limits_{n = 0}^p {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \gamma } \right)} } \right| = \\ \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left| {\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \gamma } \right)} } \right| \le \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left| {\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}} } \right|\left| {{P_n}\left( {\cos \gamma } \right)} \right|, \end{array} \begin{array}{l} {E_p} \le \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left| {\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}} } \right|\sqrt {\frac{1}{{2\left( {n + 1} \right) + 1}}} \le \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left| {\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}} } \right|\frac{1}{{\sqrt {2p + 3} }} \le \\ \frac{1}{{4{\rm{ \mathsf{ π} }}}}\frac{1}{r}\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^n}}}\frac{1}{{\sqrt {2p + 3} }}} \le \frac{1}{{4{\rm{ \mathsf{ π} }}}}\frac{1}{{r - \rho }}{\left( {\frac{\rho }{r}} \right)^{p + 1}}\frac{1}{{\sqrt {2p + 3} }}. \end{array} \left| {\frac{{\cos \theta \sin \alpha \cos \left( {\varphi - \beta } \right) - \sin \theta \cos \alpha }}{{\sqrt {1 - {{\cos }^2}\nu } }}} \right| \le 1.

证明 要证式(4),即证[cos θ sin α cos( φ - β )-sin θ cos α ] 2 ≤1-cos 2 ν .由夹角间的关系得:

\begin{array}{l} {\cos ^2}\nu = {\left[ {\cos \theta \cos \alpha + \sin \theta \sin \alpha \cos \left( {\varphi - \beta } \right)} \right]^2} = {\cos ^2}\theta {\cos ^2}\alpha + {\sin ^2}\theta {\sin ^2}\alpha {\cos ^2}\left( {\varphi - \beta } \right) + \\ 2\cos \theta \cos \alpha \sin \theta \sin \alpha \cos \left( {\varphi - \beta } \right), \end{array} \begin{array}{l} {\left[ {\cos \theta \sin \alpha \cos \left( {\varphi - \beta } \right) - \sin \theta \cos \alpha } \right]^2} = {\cos ^2}\theta {\sin ^2}\alpha {\cos ^2}\left( {\varphi - \beta } \right) + {\sin ^2}\theta {\cos ^2}\alpha - \\ 2\sin \theta \cos \alpha \cos \theta \sin \alpha \cos \left( {\varphi - \beta } \right). \end{array}

则有[cos θ sin α cos( φ - β )-sin θ cos α ] 2 +cos 2 ν =cos 2 α +sin 2 α cos 2 ( φ - β )≤1.

定理3 若球坐标系下源点为 X i ( ρ i , α i , β i ),场点为 X ( r , θ , φ ),且满足cos ν =cos θ cos α +sin θ ·sin α cos( φ - β ),那么

\left| {\frac{{\sin \alpha \sin \left( {\varphi - \beta } \right)}}{{\sqrt {1 - {{\cos }^2}\nu } }}} \right| \le 1.

证明 要证式(5),即证1-cos 2 ν -sin 2 α sin 2 ( φ - β )≥0.

由夹角间的关系得

\begin{array}{l} 1 - {\cos ^2}\nu - {\sin ^2}\alpha {\sin ^2}\left( {\varphi - \beta } \right) =\\ 1 - {\cos ^2}\theta {\cos ^2}\alpha - {\sin ^2}\theta {\sin ^2}\alpha {\cos ^2}\left( {\varphi - \beta } \right) - {\sin ^2}\theta {\sin ^2}\alpha {\sin ^2}\left( {\varphi - \beta } \right) - \\ {\cos ^2}\theta {\sin ^2}\alpha {\sin ^2}\left( {\varphi - \beta } \right) -\\ 2\cos \theta \cos \alpha \sin \theta \sin \alpha \cos \left( {\varphi - \beta } \right) = 1 - {\cos ^2}\theta {\cos ^2}\alpha - {\sin ^2}\theta {\sin ^2}\alpha - \\ {\cos ^2}\theta {\sin ^2}\alpha {\sin ^2}\left( {\varphi - \beta } \right) - 2\cos \theta \cos \alpha \sin \theta \sin \alpha \cos \left( {\varphi - \beta } \right) = \left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) - \\ {\cos ^2}\theta {\cos ^2}\alpha - {\sin ^2}\theta {\sin ^2}\alpha - {\cos ^2}\theta {\sin ^2}\alpha {\sin ^2}\left( {\varphi - \beta } \right) - 2\cos \theta \cos \alpha \sin \theta \sin \alpha \cos \left( {\varphi - \beta } \right) = \\ {\cos ^2}\theta {\sin ^2}\alpha + {\sin ^2}\theta {\cos ^2}\alpha - {\cos ^2}\theta {\sin ^2}\alpha {\sin ^2}\left( {\varphi - \beta } \right) - 2\cos \theta \cos \alpha \sin \theta \sin \alpha \cos \left( {\varphi - \beta } \right) = \\ {\cos ^2}\theta {\sin ^2}\alpha {\cos ^2}\left( {\varphi - \beta } \right) + {\sin ^2}\theta {\cos ^2}\alpha - 2\cos \theta \cos \alpha \sin \theta \sin \alpha \cos \left( {\varphi - \beta } \right) = \\ {\left( {\cos \theta \sin \alpha \cos \left( {\varphi - \beta } \right) - \sin \theta \cos \alpha } \right)^2} \ge 0. \end{array} \left\| {\Delta {E_p}} \right\| = \sqrt {{{\left( {\Delta {E_{pr}}} \right)}^2} + {{\left( {\Delta {E_{p\theta }}} \right)}^2} + {{\left( {\Delta {E_{p\theta }}} \right)}^2}} \le \frac{1}{{4{\rm{ \mathsf{ π} }}{a^2}}}\sqrt {\frac{{\left( {3p + 4} \right)\left( {p + 2} \right)}}{{2p + 3}}} {\left( {\frac{1}{2}} \right)^{p + 1}}. \Delta {E_p} = \frac{1}{{4{\rm{ \mathsf{ π} }}}}\frac{\partial }{{\partial n}}\left| {\frac{1}{R} - {{\left( {\frac{1}{R}} \right)}_p}} \right| = \frac{{\partial {E_p}}}{{\partial n}} = \frac{1}{{4{\rm{ \mathsf{ π} }}}}\frac{\partial }{{\partial n}}\left[ {\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \nu } \right)} } \right],

$U=\frac{{{\rho }^{n}}}{{{r}^{n+1}}}{{P}_{n}}$ (cos ν ),则 U 的梯度为grad( U )=( ν r , ν θ , ν φ )=( $\frac{\partial U}{\partial r}, \frac{\partial U}{r\partial \theta }, \frac{\partial U}{r~\rm{sin}~\theta \partial \varphi }$ ),整理可得 ${{\nu }_{r}}=-\left( n+1 \right)\frac{{{\rho }^{n}}}{{{r}^{n+2}}}{{P}_{n}}$ (cos ν ).

由Legendre函数的微商表示与连带的Legendre函数的微商间的关系可得 [ 10 ]

{\nu _\theta } = \frac{{{\rho ^n}}}{{{r^{n + 2}}}}\left[ {\cos \theta \sin \alpha \cos \left( {\varphi - \beta } \right) - \sin \theta \cos \alpha } \right]P_n^1\left( {\cos \nu } \right){\left( {1 - {{\cos }^2}\nu } \right)^{ - 1/2}}, {\nu _\varphi } = \frac{{{\rho ^n}}}{{{r^{n + 1}}}}\left[ {\frac{{ - \sin \theta \sin \alpha \sin \left( {\varphi - \beta } \right)}}{{\sin \theta }}} \right]P_n^1\left( {\cos \nu } \right){\left( {1 - {{\cos }^2}\nu } \right)^{ - 1/2}}. \begin{array}{l} \left| {\Delta {E_{pr}}} \right| = \frac{1}{{4{\rm{ \mathsf{ π} }}}}\frac{\partial }{{\partial r}}\left| {\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}{P_n}\left( {\cos \nu } \right)} } \right| = \frac{1}{{4{\rm{ \mathsf{ π} }}}}\frac{\partial }{{\partial r}}\left( {\frac{1}{{r - \rho }}{{\left( {\frac{\rho }{r}} \right)}^{p + 1}}} \right)\left| {{P_n}\left( {\cos \nu } \right)} \right| = \\ \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left| {\left[ { - \frac{1}{{{{\left( {r - \rho } \right)}^2}}}{{\left( {\frac{\rho }{r}} \right)}^{p + 1}} - \frac{1}{{r - \rho }}\left( {p + 1} \right)\frac{{{\rho ^{p + 1}}}}{{{r^{p + 2}}}}} \right]} \right|\left| {{P_n}\left( {\cos \nu } \right)} \right| \le \\ \frac{1}{{4{\rm{ \mathsf{ π} }}}}\left[ {\frac{1}{{{a^2}}}{{\left( {\frac{\rho }{r}} \right)}^{p + 1}} + \frac{{p + 1}}{{{a^2}}}{{\left( {\frac{\rho }{r}} \right)}^{p + 1}}} \right]\frac{1}{{\sqrt {2p + 3} }} \le \frac{1}{{4{\rm{ \mathsf{ π} }}{a^2}}}\frac{{p + 2}}{{\sqrt {2p + 3} }}{\left( {\frac{1}{2}} \right)^{p + 1}}. \end{array} \begin{array}{l} \left| {\Delta {E_{p\theta }}} \right| = \left| {\frac{1}{{4{\rm{ \mathsf{ π} }}r}}\left[ {\cos \theta \sin \alpha \cos \left( {\varphi - \beta } \right) - \sin \theta \cos \alpha } \right]{{\left( {1 - {{\cos }^2}\nu } \right)}^{ - 1/2}}\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}P_n^1\left( {\cos \nu } \right)} } \right| = \\ \frac{1}{{4{\rm{ \mathsf{ π} }}r}}\left| {\left[ {\cos \theta \sin \alpha \cos \left( {\varphi - \beta } \right) - \sin \theta \cos \alpha } \right]{{\left( {1 - {{\cos }^2}\nu } \right)}^{ - 1/2}}} \right|\frac{1}{{r - \rho }}{\left( {\frac{\rho }{r}} \right)^{p + 1}}P_n^1\left( {\cos \nu } \right) \le \\ \frac{1}{{4{\rm{ \mathsf{ π} }}a}}\frac{1}{a}{\left( {\frac{\rho }{r}} \right)^{p + 1}}\sqrt {\frac{{\left( {p + 2} \right)!}}{{\left( {2p + 3} \right)p!}}} \le \frac{1}{{4{\rm{ \mathsf{ π} }}{a^2}}}\sqrt {\frac{{\left( {p + 1} \right)\left( {p + 2} \right)}}{{2p + 3}}} {\left( {\frac{1}{2}} \right)^{p + 1}}. \end{array} \begin{array}{l} \left| {\Delta {E_{p\varphi }}} \right| = \left| {\frac{1}{{4{\rm{ \mathsf{ π} }}r}}\sin \alpha \sin \left( {\varphi - \beta } \right){{\left( {1 - {{\cos }^2}\nu } \right)}^{ - 1/2}}\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}P_n^1\left( {\cos \nu } \right)} } \right| = \\ \frac{1}{{4{\rm{ \mathsf{ π} }}r}}\left| {\sin \alpha \sin \left( {\varphi - \beta } \right){{\left( {1 - {{\cos }^2}\nu } \right)}^{ - 1/2}}} \right|\sum\limits_{n = p + 1}^\infty {\frac{{{\rho ^n}}}{{{r^{n + 1}}}}P_n^1\left( {\cos \nu } \right)} \le \\ \frac{1}{{4{\rm{ \mathsf{ π} }}a}}\frac{1}{a}{\left( {\frac{\rho }{r}} \right)^{p + 1}}\sqrt {\frac{{\left( {p + 1} \right)\left( {p + 2} \right)}}{{2p + 3}}} \le \frac{1}{{4{\rm{ \mathsf{ π} }}{a^2}}}\sqrt {\frac{{\left( {p + 1} \right)\left( {p + 2} \right)}}{{2p + 3}}} {\left( {\frac{1}{2}} \right)^{p + 1}}. \end{array} GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of computational physics, 1987, 73(2): 325-348. DOI:10.1016/0021-9991(87)90140-9 ( 0) ROKHLIN V. Rapid solution of integral equations of classical potential theory[J]. Journal of computational physics, 1985, 60(2): 187-207. DOI:10.1016/0021-9991(85)90002-6 ( 0) 宁德志, 滕斌, 勾莹. 快速多极子展开技术在高阶边界元方法中的实现[J]. 计算力学学报, 2005, 22(6): 700-704. ( 0) 刘德义. 三维弹塑性摩擦接触多极边界元法和四辊轧机轧制模拟[D]. 秦皇岛: 燕山大学, 2003. YU C, LIU D, ZHENG Y, et al. 3-D rolling processing analysis by fast multipole boundary element method[J]. Engineering analysis with boundary elements, 2016, 70: 72-79. DOI:10.1016/j.enganabound.2016.04.012 ( 0) WU F, LIU G R, LI G Y, et al. A coupled ES-BEM and FM-BEM for structural acoustic problems[J]. Noise control engineering journal, 2014, 62(4): 196-209. DOI:10.3397/1/376220 ( 0) 李瑞. 一类非局部( p , q )-Laplace方程非负解的存在性[J]. 郑州大学学报(理学版), 2016, 48(2): 5-10. ( 0) ROKHLIN L G V. A new version of the fast multipole method for the Laplace equation in three dimensions[J]. Acta numerica, 1996, 6: 229-269. ( 0) 孙淑珍, 石翔宇. 抛物型积分微分方程双线性元方法的新估计[J]. 郑州大学学报(理学版), 2016, 48(4): 6-9. ( 0) 刘式适, 刘式达. 特殊函数[M]. 北京: 气象出版社, 2002, 326-361. SHEN G X, YU C X, LIU D Y.Fast multipole boundary element method in rolling engineering and its research progress[C]//Conference Computational Methods in Engineering. Nanjing, 2009:18-20. GREENGARD L F. The rapid evaluation of potential fields in particle systems[M]. Cambridge MA: Mit Press, 2003, 121-141.