陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响[J]. 工程科学学报, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
引用本文:
陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响[J]. 工程科学学报, 2019, 41(7): 929-939.
doi:
10.13374/j.issn2095-9389.2019.07.012
CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
Citation:
CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J].
Chinese Journal of Engineering
, 2019, 41(7): 929-939.
doi:
10.13374/j.issn2095-9389.2019.07.012
陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响[J]. 工程科学学报, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
引用本文:
陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响[J]. 工程科学学报, 2019, 41(7): 929-939.
doi:
10.13374/j.issn2095-9389.2019.07.012
CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
Citation:
CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J].
Chinese Journal of Engineering
, 2019, 41(7): 929-939.
doi:
10.13374/j.issn2095-9389.2019.07.012
基于残余应力测试新方法与先进电化学测试技术的进展, 围绕残余应力类型和大小对金属材料点蚀以及应力腐蚀行为的作用机理进行了总结和归纳. 研究发现, 尽管残余压应力对腐蚀行为的抑制作用得到了大量实验的证实, 但是在不同条件下其作用方式以及机理不尽相同, 并且与材料的结构特点以及腐蚀产物等密切相关. 同时, 残余拉应力的作用尚不明确, 受到材料类型和其他因素耦合的严重影响. 另外, 在某些环境下, 影响腐蚀行为的关键是残余应力梯度或残余应力的某个临界值. 但是对有色金属的研究表明残余拉应力和压应力均会导致基体中位错和微应变等结构缺陷增加, 进而促进点蚀敏感性, 降低材料服役性能. 最后, 对目前研究存在的局限进行了讨论和展望.
残余应力 /
腐蚀电化学行为 /
点蚀 /
应力腐蚀 /
微区电化学
Abstract:
It has been generally recognized that the synergistic action of aggressive media and residual stress that arises during metals fabrication, processing, and service can affect the behavior of corrosion electrochemistry. However, due to the limitation of testing techniques, studies on the influence of residual stress and its synergistic effects with other factors on corrosion initiation and propagation are relatively rare and confined to macro levels. With the developments of residual stress measurements and local electrochemical methods, especially the application of localized electrochemical probe techniques, the effect of residual stress on corrosion electrochemical behavior in the micro-domain has been studied by many researchers in recent years. Based on new testing methods of residual stress and advanced electrochemical measurements, this paper mainly summarized the contents and progress of recent research on metallic materials pitting and stress corrosion behavior under different types and levels of residual stresses. For iron and steel materials, the inhibition of compressive residual stress on corrosion has been supported by many experiments, but it shows different roles and mechanisms in different conditions, closely correlating with material structure and corrosion product. In addition, research has demonstrated that tensile residual stress has different impacts on corrosion resistance in alkaline and acidic conditions and that the influence of tensile residual stress on corrosion, strongly influenced by material types and other coupling factors, is still uncertain. Moreover, some experimental results have also shown that residual stress gradient or its critical value is a significant contributor to corrosion behavior, and only when they are greater than a certain value can pitting or micro-cracks be significantly initiated. However, studies on nonferrous metals suggest that both tensile and compressive residual stresses reduce corrosion resistance because they can increase dislocation density and microstrain, and these structural defects increase the occurrence of active sites for pitting corrosion, thereby degrading performance. Finally, the limitations and prospect of current research were also presented in this paper.
Key words:
residual stress /
corrosion electrochemical behavior /
pitting /
stress corrosion /
localized electrochemistry
Schematic illustrations of the combined effect of grain size and residual stress on SCC initiation (RS-residual stress): (a) the negative effect of tensile residual stress; (b) the combined effect of grain refinement and tensile residual stress; (c) the duplicate beneficial effect of grain refinement and compressive residual stress
[
58
]
Rao S X, Zhu L Q, Li D, et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy. J Chin Soc Corros Prot, 2007, 27(4): 228
doi:
10.3969/j.issn.1005-4537.2007.04.009
饶思贤, 朱立群, 李荻, 等. 力学化学效应对LY12CZ铝合金点蚀行为的影响. 中国腐蚀与防护学报, 2007, 27(4): 228
doi:
10.3969/j.issn.1005-4537.2007.04.009
Gutman E M, Solovioff G, Eliezer D. The mechanochemical behaviour of type 316L stainless steel. Corros Sci, 1996, 38(7): 1141
doi:
10.1016/0010-938X(96)00008-X
Xiao J M, Cao C N. Principle of Material Corrosion. Beijing: Chemical Industry Press, 2002
肖纪美, 曹楚南. 材料腐蚀学原理. 北京: 化学工业出版社, 2002
Meng F J, Wang J Q, Han E, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water. Corros Sci, 2010, 52(3): 928
http://www.sciencedirect.com/science/article/pii/S0010938X09005691
Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci, 2011, 53(4): 1201
doi:
10.1016/j.corsci.2010.12.011
Yan Y J, Yan Y, He Y, et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment. Int J Hydrogen Energy, 2015, 40(5): 2404
doi:
10.1016/j.ijhydene.2014.12.020
Zhang Z B, Obasi G, Morana R, et al. In-situ observation of hydrogen induced crack initiation in a nickel-based superalloy. Scripta Mater, 2017, 140: 40
doi:
10.1016/j.scriptamat.2017.07.006
Shen Z, Arioka K, Lozano-Pereza S. A mechanistic study of SCC in Alloy 600 through high-resolution characterization. Corros Sci, 2018, 132: 244
doi:
10.1016/j.corsci.2018.01.004
Zhou N, Pettersson R, Peng R L, et al. Effect of surface grinding on chloride induced SCC of 304L. Mater Sci Eng A, 2016, 658: 50
doi:
10.1016/j.msea.2016.01.078
Alvarez M G, Lapitz P, Ruzzante J. Analysis of acoustic emission signals generated from SCC propagation. Corros Sci, 2012, 55: 5
doi:
10.1016/j.corsci.2011.08.014
Masuda H. SKFM observation of SCC on SUS304 stainless steel. Corros Sci, 2007, 49(1): 120
doi:
10.1016/j.corsci.2006.05.014
Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9): B352
doi:
10.1149/1.2218762
Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research——Analysis of the role of stress on pitting sensitivity. Corros Sci, 2007, 49(1): 158
doi:
10.1016/j.corsci.2006.05.032
Long F Y, Yang Y, Wang S L, et al. Microscale electrochemical measurement technology and its application in corrosion. Corros Sci Prot Technol, 2015, 27(2): 194
https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201502015.htm
龙凤仪, 杨燕, 王树立, 等. 微区电化学测量技术及其在腐蚀中的应用. 腐蚀科学与防护技术, 2015, 27(2): 194
https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201502015.htm
Vieira L, Lucas F L C, Fisssmer S F, et al. Scratch testing for micro-and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques. Surf Coat Technol, 2014, 260: 205
doi:
10.1016/j.surfcoat.2014.06.065
Marques A G, Izquierdo J, Souto R M, et al. SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. Electrochim Acta, 2015, 153: 238
doi:
10.1016/j.electacta.2014.11.192
Mouanga M, Puiggali M, Devos O. EIS and LEIS investigation of aging low carbon steel with Zn-Ni coating. Electrochim Acta, 2013, 106: 82
doi:
10.1016/j.electacta.2013.05.021
Simões A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell. Corros Sci, 2007, 49(2): 726
doi:
10.1016/j.corsci.2006.04.021
Wang F Y, Mao K M, Li B. Prediction of residual stress fields from surface stress measurements. Int J Mech Sci, 2018, 140: 68
doi:
10.1016/j.ijmecsci.2018.02.043
Rae W, Lomas Z, Jackson M, et al. Measurements of residual stress and microstructural evolution in electron beam welded Ti-6Al-4V using multiple techniques. Mater Charact, 2017, 132: 10
doi:
10.1016/j.matchar.2017.07.042
Kartal M E, Kiwanuka R, Dunne F P E. Determination of sub-surface stresses at inclusions in single crystal superalloy using HR-EBSD, crystal plasticity and inverse eigenstrain analysis. Int J Solids Struct, 2015, 67-68: 27
doi:
10.1016/j.ijsolstr.2015.02.023
Salvati E, Korsunsky A M. An analysis of macro-and micro-scale residual stresses of Type Ⅰ, Ⅱ and Ⅲ using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. Int J Plast, 2017, 98: 123
doi:
10.1016/j.ijplas.2017.07.004
Withers P J. Residual stress and its role in failure. Rep Prog Phys, 2007, 70(12): 2211
doi:
10.1088/0034-4885/70/12/R04
Song J K, Huang X B, Gao Y K. Test and analysis technology of residual stress. Surf Technol, 2016, 45(4): 75
https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG199403000.htm
宋俊凯, 黄小波, 高玉魁. 残余应力测试技术分析. 表面技术, 2016, 45(4): 75
https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG199403000.htm
James M N. Residual stress influences on structural reliability. Eng Fail Anal, 2011, 18(8): 1909
doi:
10.1016/j.engfailanal.2011.06.005
Withers P J, Bhadeshia H K D H. Residual stress Part 1-measurement techniques. Mater Sci Technol, 2001, 17(4): 355
doi:
10.1179/026708301101509980
Pan L. Research on the Mechanisms and Related Experiments of Controlling Residual Stress in Carbon Steel based on Pulse Current Method[Dissertation]. Hangzhou: Zhejiang University, 2016
潘龙. 脉冲电流法调控碳钢残余应力的机理及相关实验研究[学位论文]. 杭州: 浙江大学, 2016
Groth B P, Langan S M, Haber R A, et al. Relating residual stresses to machining and finishing in silicon carbide. Ceram Int, 2016, 42(1): 799
doi:
10.1016/j.ceramint.2015.08.179
Niku-Lari A. Residual Stresses. Oxford: Pergamon Press, 1987
Huang X F, Liu Z W, Xie H M. Recent progress in residual stress measurement techniques. Acta Mech Solida Sin, 2013, 26(6): 570
doi:
10.1016/S0894-9166(14)60002-1
Wang N, Luo L, Liu Y, et al. Research progress on stress measurement technology for metal components. Chin J Sci Instrum, 2017, 38(10): 2508
doi:
10.3969/j.issn.0254-3087.2017.10.020
王楠, 罗岚, 刘勇, 等. 金属构件残余应力测量技术进展. 仪器仪表学报, 2017, 38(10): 2508
doi:
10.3969/j.issn.0254-3087.2017.10.020
Bemporad E, Brisotto M, Depero L E, et al. A critical comparison between XRD and FIB residual stress measurement techniques in thin films. Thin Solid Films, 2014, 572: 224
doi:
10.1016/j.tsf.2014.09.053
Wang Q M, Sun Y. Research development on the test methods of residual stress. J Mech Electr Eng Mag, 2011, 28(1): 11
doi:
10.3969/j.issn.1001-4551.2011.01.003
王庆明, 孙渊. 残余应力测试技术的进展与动向. 机电工程, 2011, 28(1): 11
doi:
10.3969/j.issn.1001-4551.2011.01.003
Sun G A, Chen B. The technology and application of residual stress analysis by neutron diffraction. Nucl Tech, 2007, 30(4): 286
doi:
10.3321/j.issn:0253-3219.2007.04.012
孙光爱, 陈波. 中子衍射残余应力分析技术及其应用. 核技术, 2007, 30(4): 286
doi:
10.3321/j.issn:0253-3219.2007.04.012
Wilkinson A J, Meaden G, Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy, 2006, 106(4-5): 307
doi:
10.1016/j.ultramic.2005.10.001
Huang Y M, Pan C X. Micro-stress-strain analysis in materials based upon EBSD technique: a review. J Chin Electron Microsc Soc, 2010, 29(1): 1
doi:
10.3969/j.issn.1000-6281.2010.01.001
黄亚敏, 潘春旭. 基于电子背散射衍射(EBSD)技术的材料微区应力应变状态研究综述. 电子显微学报, 2010, 29(1): 1
doi:
10.3969/j.issn.1000-6281.2010.01.001
Sato H, Shishido N, Kamiya S, et al. Local distribution of residual stress of Cu in LSI interconnect. Mater Lett, 2014, 136: 362
doi:
10.1016/j.matlet.2014.08.088
Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting. Acta Metall Sin, 2018, 54(3): 393
https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201803005.htm
文舒, 董安平, 陆燕玲, 等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟. 金属学报, 2018, 54(3): 393
https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201803005.htm
Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111: 494
doi:
10.1016/j.corsci.2016.05.022
Wu Q, Xie D J, Si Y, et al. Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J Manuf Processes, 2018, 32: 530
doi:
10.1016/j.jmapro.2018.03.015
Kayser W, Bezold A, Broeckmann C. EBSD-based FEM simulation of residual stresses in a WC6wt. -%Co hardmetal. Int J Refract Met Hard Mater, 2018, 73: 139
doi:
10.1016/j.ijrmhm.2017.12.035
Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials-review. Corros Sci, 2015, 90: 5
doi:
10.1016/j.corsci.2014.10.006
Wang Y J, Han X P, Liu Y, et al. Effect of residual stress on corrosion sensitivity of carbon steel studied by SECM. Chem Res Chin Univ, 2014, 30(6): 1022
doi:
10.1007/s40242-014-4099-6
Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta, 2008, 53(6): 2831
doi:
10.1016/j.electacta.2007.10.077
Xiong Q R, Liu D X, Zhang G J, et al. Influence of residual tensile stress on stress corrosion behavior of the base metal of X80 pipe//Proceedings of the ASME 2014 Pressure Vessels & Piping Conference. Anaheim, 2014: V001T01A073
Xiong Q R, Li W W, Fu A Q, et al. Effect of residual stress on electrochemistry corrosion resistance of X80 UOE pipe. Rare Met Mater Eng, 2012, 41(Suppl 2): 749
https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2180.htm
熊庆人, 李为卫, 付安庆, 等. 残余应力对X80 UOE钢管耐电化学腐蚀性能的影响. 稀有金属材料工程, 2012, 41(增刊2): 749
https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2180.htm
Trethewey K R, Wenman M, Chard-Tuckey P, et al. Correlation of meso-and micro-scale hardness measurements with the pitting of plastically-deformed Type 304L stainless steel. Corros Sci, 2008, 50(4): 1132
doi:
10.1016/j.corsci.2007.11.026
Martin F A, Bataillon C, Cousty J. In situ AFM detection of pit onset location on a 304L stainless steel. Corros Sci, 2008, 50(1): 84
doi:
10.1016/j.corsci.2007.06.023
Lai W Y, Xu X, Bai Z Q, et al. Effect of residual tensile stresses on electrochemical corrosion behavior of 304 stainless steel. Mater Mech Eng, 2016, 40(2): 84
https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201602024.htm
来维亚, 徐欣, 白真权, 等. 残余拉应力对304不锈钢电化学腐蚀行为的影响. 机械工程材料, 2016, 40(2): 84
https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201602024.htm
Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9): B352
doi:
10.1149/1.2218762
Nguyen T T, Bolivar J, Shi Y, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation. Corros Sci, 2018, 132: 146
doi:
10.1016/j.corsci.2017.12.027
Nam J Y, Seo D H, Lee S Y, et al. The effect of residual stress on the SCC using ANSYS. Procedia Eng, 2011, 10: 2609
doi:
10.1016/j.proeng.2011.04.435
Bai L Y, Jiang K B, Gao L, et al. Influence mechanism of residual stress on stress corrosion behavior of welded structure. Hot Work Technol, 2017, 46(21): 168
https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201721049.htm
白林越, 江克斌, 高磊, 等. 残余应力对焊接结构应力腐蚀行为影响机理研究. 热加工工艺, 2017, 46(21): 168
https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201721049.htm
Toribio J. Role of crack-tip residual stresses in stress corrosion behavior of prestressing steel. Constr Build Mater, 1998, 12(5): 283
doi:
10.1016/S0950-0618(98)00010-5
Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros Sci, 2012, 60: 145
doi:
10.1016/j.corsci.2012.03.044
Wei X L, Zhang C, Ling X. Effects of laser shock processing on corrosion resistance of AISI 304 stainless steel in acid chloride solution. J Alloys Compd, 2017, 723: 237
doi:
10.1016/j.jallcom.2017.06.283
Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des, 2011, 32(7): 3823
doi:
10.1016/j.matdes.2011.03.012
Zhang W Q, Fang K W, Hu Y J, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corros Sci, 2016, 108: 173
doi:
10.1016/j.corsci.2016.03.008
Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part Ⅰ: pitting and cracking occurrence. Acta Mater, 2007, 55(1): 29
doi:
10.1016/j.actamat.2006.08.037
Gravier J, Vignal V, Bissey-Breton S. Influence of residual stress, surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere. Corros Sci, 2012, 61: 162
doi:
10.1016/j.corsci.2012.04.032
Pandey V, Singh J K, Chattopadhyay K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy. J Alloys Compd, 2017, 723: 826
doi:
10.1016/j.jallcom.2017.06.310
Chen T, John H, Xu J, et al. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: effect of machine hammer peening. Corros Sci, 2013, 77: 230
doi:
10.1016/j.corsci.2013.08.007
Zheng Y, Li Y, Chen J H, et al. Effects of tensile and compressive deformation on corrosion behavior of a Mg-Zn alloy. Corros Sci, 2015, 90: 445
doi:
10.1016/j.corsci.2014.10.043
Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111: 494
doi:
10.1016/j.corsci.2016.05.022