3.
School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom
4.
南方科技大学 机械与能源工程系 深圳 518055
Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing
LIU Guang
1
,
2
,
CHEN Peng
1
,
3
,
YAO Xiyu
1
,
CHEN Pu
1
,
LIU Xingchen
1
,
LIU Chaoyang
4
,
YAN Ming
,
1
1.
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2.
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3.
School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom
4.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Corresponding authors:
YAN Ming, professor, Tel: (0755) 88018967, E-mail:
[email protected]
Received:
2021-01-18
Revised:
2021-04-30
以新型模具材料为应用背景,首先从多主元合金设计的角度,预测了CrMoTi中熵合金成分,并在实验中验证了其单相bcc结构。对CrMoTi中熵合金的硬度和热学性能进行了测试。结果表明,电弧熔炼样品在室温下硬度为520.6 HV
0.3
,在600℃时硬度为356.0 HV
0.3
;在室温下比热容为371 J/(kg·K),热导率为14.0 W/(m·K)。随后以金属元素粉为原材料,对比研究了直接激光沉积(DLD)和选区激光熔化(SLM) 2种增材制造技术在原位合金化成型CrMoTi中熵合金的加工适性。其中DLD样品在打印态密度最高达7.46 g/cm
3
,硬度达到634.6 HV
0.3
。SLM的原位合金化加工适性相对较差,样品密度最高为7.27 g/cm
3
,硬度为605.9 HV
0.3
,且在其内部残留有未熔Mo粉。相比较而言,在作为模具的性能方面,CrMoTi合金表现出略优于H13钢的硬度和高温热导率。在原位合金化方面,CrMoTi合金的原料包含了熔沸点差异较大的金属元素,且形成相为硬脆bcc结构相,对增材制造技术而言有较大的加工难度,而DLD技术相对SLM表现出更好的原位合金化加工适性。
中熵合金
;
增材制造
;
原位合金化
;
直接激光沉积
;
选区激光熔化
;
This study verifies the body-centered cubic (bcc) formability of CrMoTi medium-entropy alloy (MEA) as a potential mold material via theoretical calculations based on the concepts of multiprincipal element alloys and practical experiments employing arc melting and additive manufacturing (AM) techniques. The hardness and thermal properties of arc-melted CrMoTi MEA were tested at room and elevated temperatures. At room temperature, the alloy possesses a hardness of 520.6 HV
0.3
, thermal capacity of 371 J/(kg·K), and heat conductivity of 14.0 W/(m·K). Its hardness drops to 356.0 HV
0.3
at 600
o
C, and its thermal capacity and heat conductivity increase to 446 J/(kg·K) and 28.4 W/(m·K), respectively, at 709
o
C, exhibiting the characteristic of semimetals. AM techniques are efficient for fabricating highly customized molds and have been widely used. Moreover, in situ alloying can further improve the compositional flexibility in the AM process. The in situ alloying printability of two AM techniques,
i.e.
, direct laser deposition (DLD) and selective laser melting (SLM), was investigated using a blend of elemental powders. The best densification within the AM approaches (7.46 g/cm
3
) is achieved using DLD, and the microhardness of DLDed samples reaches 634.6 HV
0.3
. Conversely, the printability of SLM is relatively restricted. The optimal density and microhardness of the SLMed sample are 7.27 g/cm
3
and 605.9 HV
0.3
, respectively, which are lower than those of the DLDed samples. In the DLDed samples, the large melt pool can homogenize most elements but with a Cr burning loss. Mo melts insufficiently during the SLM process and remains a partially melted powder in as-built samples. Moreover, cracking is already inevitable in SLMed samples, indicating that homogenization can hardly be improved by applying excessive energy input. As a brittle bcc alloy, its matrix tends to fail under the thermal stress of the heat accumulation in the AM process. Furthermore, the phase transformation in a small melt pool also intrinsically harms printability for in situ alloying studies through AM. Results from this study reveal that DLD possesses advantages over SLM for the in situ alloying of brittle materials like CrMoTi MEA. Combining elements with adequate overlapping of the liquid zone could be essential for superior printability of AM in situ alloying, especially with a high ratio of introduced elements.
Keywords:
medium-entropy alloy
;
additive manufacturing
;
in situ alloying
;
direct laser deposition
;
selective laser melting
;
thermal property
本文引用格式
刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明.
CrMoTi
中熵合金的性能及其原位合金化增材制造
[J].
金属学报
, 2022, 58(8): 1055-1064 DOI:
10.11900/0412.1961.2021.00030
LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming.
Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing
[J].
Acta Metallurgica Sinica
, 2022, 58(8): 1055-1064 DOI:
10.11900/0412.1961.2021.00030
选取Cr、Mo、Ti 3种元素来形成中熵合金,其物理性质列于
表1
[
13
]
。根据Yang等
[
14
]
总结多主元合金研究时提出的
Ω
-
δ
(
Ω
为合金相稳定的判定参数,
δ
为组元原子半径差的均方差)判据,对其形成单一固溶体相的能力进行理论计算。其中
Ω
参数综合了合金的熔点(
T
m
)、混合熵(Δ
S
mix
)与混合焓(Δ
H
mix
)。其表达式如下:
Table 1
Cr、Mo和Ti元素的物理性质
[
13
]
Table 1
Physical properties of Cr, Mo, and Ti elements
[
13
]
Element
A
r
T
m
/ K
T
b
/ K
r
/ nm
VEC
κ
/ (W·m
-1
·K
-1
)
Cr
51.99
2180
2945
0.128
6
93.9
Mo
95.95
2896
4912
0.139
6
138.0
Ti
47.87
1941
3560
0.147
4
21.9
Note:
A
r
—relative atomic mass,
T
m
—melting point,
T
b
—boiling point,
r
—atomic radius,
VEC
—valence electron concentration,
κ
—thermal conductivity
对电弧熔炼样品显微硬度及热学性能进行了测试。
图5
为不同温度下显微硬度测试结果。其中25℃时CrMoTi合金的Vickers硬度为520.6 HV
0.3
,随温度升高,Vickers硬度逐渐减小,600℃时Vickers硬度为356.0 HV
0.3
。不同温度下比热容(
c
p
)与热导率(
κ
)测试结果绘制于
图6
中。其中100、300和500℃对应的热学性能为拟合数据,用以参考对比。28℃时,CrMoTi合金的
c
p
为371 J/(kg·K),
κ
为14.0 W/(m·K)。随温度升高,
c
p
和
κ
增大。709℃时
c
p
和
κ
分别为446 J/(kg·K)和28.4 W/(m·K)。
电弧熔炼CrMoTi中熵合金的硬度和热学性能
Table 4
Hardnesses and thermal properties of CrMoTi MEA fabricated by arc melting
T
Hardness
κ
c
p
a
o
C
HV
0.3
(W·m
-1
·K
-1
)
(J·kg
-1
·K
-1
)
(10
-6
m
2
·s
-1
)
RT
*
520.6
14.0
371
5.26
100
455.6
15.9
374
5.91
207
430.0
18.5
382
6.78
300
409.2
21.0
396
7.37
413
372.3
23.8
416
7.93
500
369.6
25.5
428
8.28
611
356.0
27.3
439
8.63
709
-
28.4
446
8.84
Note:
T
—temperature,
a
—thermal diffusivity.
*
For Vickers hardness, RT is 25
o
C; for thermal properties, RT is fitted at 28
o
C. Data at 100, 300, and 500
o
C were obtained from regression treatment
We propose a methodology for predicting the printability of an alloy, subject to laser powder bed fusion additive manufacturing. Regions in the process space associated with keyhole formation, balling, and lack of fusion are assumed to be strong functions of the geometry of the melt pool, which in turn is calculated for various combinations of laser power and scan speed via a Finite Element thermal model that incorporates a novel vaporization-based transition from surface to volumetric heating upon keyhole formation. Process maps established from the Finite Element simulations agree with experiments for a Ni-5wt.%Nb alloy and an equiatomic CoCrFeMnNi High Entropy Alloy and suggest a strong effect of chemistry on alloy printability. The printability maps resulting from the use of the simpler Eagar-Tsai model, on the other hand, are found to be in disagreement with experiments due to the oversimplification of this approach. Uncertainties in the printability maps were quantified via Monte Carlo sampling of a multivariate Gaussian Processes surrogate model trained on simulation outputs. The printability maps generated with the proposed method can be used in the selection-and potentially the design-of alloys best suited for Additive Manufacturing. (C) 2019 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
...
图9
为DLD加工CrMoTi合金样品的密度与功率曲线.可见,随着激光功率的上升,沉积样品的密度由功率850 W时的6.95 g/cm
3
增加至1150 W时的7.41 g/cm
3
,并在功率1350 W时达到最高的7.47 g/cm
3
并随后趋于稳定.最高密度样品记为DLD1350W.
图10
为SLM打印件密度与体能量密度曲线.其中体能量密度(
VED
)由
VED
=
P
/ (
vht
)计算
[
20
]
.可见,样品的密度总体呈现出随体能量密度的增加而提高的趋势.其中最高密度为7.27 g/cm
3
,对应的体能量密度为166.67 J/mm
3
(
P
= 320 W,
v
= 800 mm/s,
h
= 0.06 mm).该样品记为SLM167J.从
图9
还可以看出,采用DLD原位合金化的CrMoTi样品密度在激光功率大于1150 W时超过了电弧熔炼样品.由于Cr、Mo、Ti 3种元素熔沸点差异较大且原料为单质元素,在加工中随热输入增大将伴随不同程度的元素烧损,从而影响完成试样的真实密度.关于原位合金化烧损带来的影响将在后文讨论. ...
...
图9
为DLD加工CrMoTi合金样品的密度与功率曲线.可见,随着激光功率的上升,沉积样品的密度由功率850 W时的6.95 g/cm
3
增加至1150 W时的7.41 g/cm
3
,并在功率1350 W时达到最高的7.47 g/cm
3
并随后趋于稳定.最高密度样品记为DLD1350W.
图10
为SLM打印件密度与体能量密度曲线.其中体能量密度(
VED
)由
VED
=
P
/ (
vht
)计算
[
20
]
.可见,样品的密度总体呈现出随体能量密度的增加而提高的趋势.其中最高密度为7.27 g/cm
3
,对应的体能量密度为166.67 J/mm
3
(
P
= 320 W,
v
= 800 mm/s,
h
= 0.06 mm).该样品记为SLM167J.从
图9
还可以看出,采用DLD原位合金化的CrMoTi样品密度在激光功率大于1150 W时超过了电弧熔炼样品.由于Cr、Mo、Ti 3种元素熔沸点差异较大且原料为单质元素,在加工中随热输入增大将伴随不同程度的元素烧损,从而影响完成试样的真实密度.关于原位合金化烧损带来的影响将在后文讨论. ...
Hydrogen absorbing properties and structures of Ti-Cr-Mo alloys