添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

生物通报道:CRISPR全称为clustered regularly interspersed short palindromic repeats,是源于细菌及古细菌中的一种后天免疫系统,它可利用靶位点特异性的RNA指导Cas蛋白对靶位点序列进行修饰。

这一技术发展迅速,就在去年,研究人员已经发现了利用CRISPR/Cas 治愈小鼠中一种罕见肝脏疾病的方法,并且科学家们也发现可以通过这种方法切除人类免疫细胞中HIV病毒插入的基因,阻止HIV进入血液干细胞。其原因可能在于这种方法比其它基于核酸酶的编辑方法操作简便,研究人员跟着指南操作,进行一轮PCR就能基本完成CRISPR实验了。

延伸阅读: 明星技术CRISPR新手操作指南

但CRISPR/Cas系统也存在自身的一些缺陷,比如进入细胞后,有可能在非目标位点进行酶切,从而导致脱靶,这对于临床应用来说是一大败笔。

我们需要更加精确和有效的CRISPR工具,研究人员也正在研究如何避免这类情况的发生,开发更好的预测编辑工具,或者研发能将CRISPR元件更有效传递到细胞内的方式,以下是The Scientist杂志汇总的新进展。

CRISPR操作指南进阶版:如何精确有效完成实验

人体细胞中的可诱导CRISPR

研究者:纪念斯隆凯特琳癌症中心干细胞生物学中心的发育生物学家Danwei Huangfu

研究项目:利用人类胚胎干细胞了解胰腺发育过程中特殊基因的作用和相互影响

CRISPR/Cas工具的一大挑战就是将这一系统中的元件传输到细胞内,通常这是通过电穿孔完成,但是将CRISPR/Cas系统插入到人类干细胞中的这一过程,效率非常低,Huangfu表示,要完成一个单一突变传送,需要一个月的时间。

Huangfu的项目要求删除一个或多个基因的两个拷贝,这也就意味着多轮靶定,她需要一个效率更高的系统。

要解决这个问题,最困难的一步是将大体积的Cas9 基因传入到细胞内,为此Huangfu研究组构建了一种已经整合了Cas9元件的细胞系:首先他们采用了一种相似的技术TALEN,这种技术与CRISPR技术的不同之处在于,前者采用的是DNA结合位点,后者才有的是导向RNAs(An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells)。

“通过TALENs,我们将 Cas9 整合到了人类干细胞上的一个非常特殊的位点,这一位点不易发生沉默效应。”

研究人员还设计了能在药物多西环素存在的条件下表达 Cas9 的细胞。这种方法被称为iCRISPR,研究人员能利用iCRISPR在分化过程中不同时间点里打开基因组编辑。

(注意不要将iCRISPR与CRISPRi弄混淆了,后者与RNAi相似,能可逆性的阻止转录,相关内容: Cell子刊:干细胞的iCRISPR平台

iCRISPR技术能将CRISPR/Cas操作主要步骤缩减成一个:用导向RNA转染细胞,导向RNA要小得多,也更容易进入细胞。“我们惊讶的发现(iCRISPR)作用非常好,”Huangfu说,利用这一技术,她的研究组在一个月的时间里完成了12个基因的突变。

如何操作:

Huangfu研究组公布了这一技术的详细步骤(The iCRISPR platform for rapid genome editing in human pluripotent stem cells),如果已经有了一些人类干细胞基因靶向的实验经验,研究人员可以从Addgene 公司购买质粒,自己构建iCas9 表达的细胞。如果材料齐全,那么一到两个月时间就能构建出 iCas9 细胞,再用接下来的一两个月时间完成基因组编辑细胞系。

如果不想从头制作 iCas9 细胞,那么可以联系SKI Stem Cell Research Facility。

注意事项:

虽然Huangfu研究组目前还未发现明显的脱靶效应,但是这一研究组采用了两种措施来避免潜在的脱靶(类似于RNAi实验):恢复实验(rescue experiments,生物通译)和用两个不同的 CRISPRs 靶向相同基因。

成本:Addgene质粒成本为$65(当地价格),iCas9 细胞首次构建需要$600,SKI购买需要400美元。


新传送方式

研究者:哈佛大学化学与化学生物学教授David Liu

项目:在小鼠模型中寻找治疗遗传性耳聋的方法

基因组编辑蛋白需要进入靶向细胞核中完成任务,但是 CRISPR/Cas9和其它所有大分子一样,传递是一个主要问题。

而且如果 CRISPR/Cas9 系统是作为DNA质粒传递进入的话,Cas9 核酸酶作用会增强,不仅会切断靶向基因,而且还会影响其周围的基因,导致脱靶编辑。

为了解决这一问题,Liu等人模拟了科学家们将DNA和RNA一类的核酸传送至细胞中去的方式。这一系统依赖于称作为阳离子脂质的正电荷分子,其能够结合负电荷核酸形成脂质体。脂质体一旦形成,其可通过至少两种方式将内容物传递到细胞中。在某些情况下,脂质体有可能与细胞膜融合释放它的货物。此外,脂质体还可能与核内体膜融合释放出内容物。

“我们有一个非常简单的想法,即将研究人员用来传送DNA和RNA的商业化阳离子脂质用于传送蛋白质。这次我们没有采用超正电荷蛋白,而是利用了超负电荷蛋白,其类似于核酸处于高度的负电荷状态。利用阳离子脂质来传送与高度负电荷分子结合的蛋白质,相比于采用正电荷蛋白质或肽来传送蛋白质其效力提高了近1000倍,”Liu说。

最终实验证实了利用这一新系统来传送基因组编辑蛋白质,至少与传送编码基因组编辑蛋白的DNA所观察到的最好结果一样高效。而且传送蛋白比传送DNA的基因组编辑特异性要高得多。

传送DNA之后,在长时间内难以控制编码蛋白的表达量。DNA传送与期望的基因组编辑结果之间总是无法一致。在基因组编辑中,其任务是修复一个或两个拷贝的基因。而在基因组编辑蛋白完成这一任务后,你会想让它消失,因为在此之后它所做的就是不希望发生并有可能是有害的事情。

如何操作:

操作人员可以仔细阅读这篇论文的补充信息 (Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo)。Liu表示,“我们尽可能详细的描述了细节内容,我们希望很多实验室都能从中获益。”这些补充信息也描述了研究组如何调整多个变量,优化Cas9 传递的过程,对于有经验的分子生物学家来说,实验过程也相对简单易于理解。

注意事项:

研究组还表示这一方法也可以传送其它大分子,如Cre重组酶和TALENs,Liu实验室正在尝试其它的蛋白。

构建自己的 Cas9 蛋白成本约为300 美元(当地价格)。而每个新的导向RNA 成本约 50 美元(包括人力和物力),另外还有转录和纯化试剂盒500 美元(当地价格)。