torch.backends.cudnn.is_available()
torch.backends.cudnn.version()
@ptrblck -
I know this thread seems to have run on forever, and please forgive me for asking, but I’m seemingly having the same issue on my Ubuntu 18.04 machine. I have followed what instructions I can above, but I’m also getting a CUDA Available = False result. Below is the output of environment, can you please provide guidance? thanks
(base) grbman@Zidane:~/GFPGAN$ nvidia-smi
Thu Jan 6 15:33:35 2022
±----------------------------------------------------------------------------+
| NVIDIA-SMI 418.226.00 Driver Version: 418.226.00 CUDA Version: 10.1 |
|-------------------------------±---------------------±---------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro K1100M Off | 00000000:01:00.0 On | N/A |
| N/A 45C P0 N/A / N/A | 410MiB / 1991MiB | 1% Default |
±------------------------------±---------------------±---------------------+
±----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1117 G /usr/lib/xorg/Xorg 55MiB |
| 0 1233 G /usr/bin/gnome-shell 53MiB |
| 0 1533 G /usr/lib/xorg/Xorg 163MiB |
| 0 1661 G /usr/bin/gnome-shell 100MiB |
| 0 2713 G …AAgAAAAAAAAACAAAAAAAAAA= --shared-files 31MiB |
±----------------------------------------------------------------------------+
(base) grbman@Zidane:~/GFPGAN$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
(base) grbman@Zidane:~/GFPGAN$ gcc --version
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
(base) grbman@Zidane:~/Downloads$ python3 collect_env.py
Collecting environment information…
PyTorch version: 1.10.1
Is debug build: False
CUDA used to build PyTorch: Could not collect
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.6 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.27
Python version: 3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-5.4.0-92-generic-x86_64-with-glibc2.27
Is CUDA available: False
CUDA runtime version: 9.1.85
GPU models and configuration: GPU 0: Quadro K1100M
Nvidia driver version: 418.226.00
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Versions of relevant libraries:
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.20.3
[pip3] numpydoc==1.1.0
[pip3] torch==1.10.1
[pip3] torchaudio==0.10.1
[pip3] torchvision==0.11.2
[conda] blas 1.0 mkl
[conda] cpuonly 2.0 0 pytorch
[conda] cudatoolkit 10.2.89 hfd86e86_1
[conda] mkl 2021.4.0 h06a4308_640
[conda] mkl-service 2.4.0 py39h7f8727e_0
[conda] mkl_fft 1.3.1 py39hd3c417c_0
[conda] mkl_random 1.2.2 py39h51133e4_0
[conda] mypy_extensions 0.4.3 py39h06a4308_0
[conda] numpy 1.20.3 py39hf144106_0
[conda] numpy-base 1.20.3 py39h74d4b33_0
[conda] numpydoc 1.1.0 pyhd3eb1b0_1
[conda] pytorch 1.10.1 py3.9_cpu_0 pytorch
[conda] pytorch-mutex 1.0 cpu pytorch
[conda] torchaudio 0.10.1 py39_cpu [cpuonly] pytorch
[conda] torchvision 0.11.2 py39_cpu [cpuonly] pytorch
Yeah, so it looks like now I have a mis-match between what is available in the driver for my K1100M (Cuda 10.1) and the PyTorch build which is Cuda 10.2.
…guess we’re gonna have to upgrade a video card. Thanks for all the help…I do appreciate the effort
Pardon me guys, may I ask what’s the command that allows me to download PyTorch with GPU connectivity. I’ve used the suggested ones from the here but it still provides me packages with cpuonly version.
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
The following packages will be downloaded:
package | build
---------------------------|-----------------
pytorch-1.10.1 | py3.9_cpu_0 86.2 MB pytorch
torchaudio-0.10.1 | py39_cpu 4.3 MB pytorch
torchvision-0.11.2 | py39_cpu 7.1 MB pytorch
------------------------------------------------------------
Total: 97.6 MB
The following NEW packages will be INSTALLED:
pytorch pytorch/linux-64::pytorch-1.10.1-py3.9_cpu_0
torchaudio pytorch/linux-64::torchaudio-0.10.1-py39_cpu
torchvision pytorch/linux-64::torchvision-0.11.2-py39_cpu
PS: I’m using RTX 3080 and requires sm_86 CUDA capability.