摘要:
T细胞受体工程T细胞(engineered T cell receptor-T cell,TCR-T)疗法和嵌合抗原受体T细胞(chimeric antigens receptor-T cell,CAR-T)疗法是目前过继性T细胞治疗最有效的两种方式。由于CAR仅能识别肿瘤表面的抗原,在实体瘤治疗中至今未有令人满意的结果。TCR不仅能识别肿瘤表面抗原,同时能识别胞内抗原,因此,TCR-T疗法在治疗实体瘤方面显示出前所未有的前景,成为极具潜力的治疗方式。本综述探讨了TCR-T疗法与CAR-T疗法识别癌症抗原机制的差异及当前TCR-T疗法靶向的临床靶点和不同类型的肿瘤抗原,描述了TCR-T抗肿瘤治疗的临床开发现状,并讨论了临床前评估TCR效价的标准和目前TCR-T治疗的优势、存在的局限性及可能有效的应对措施。最后,我们回顾了TCR-T治疗的现状和当前仍存在的一些挑战,强调靶向肿瘤特异性抗原的重要性,概述了结合检查点阻断治疗和溶瘤病毒等的新抗原特异性TCR-T治疗策略,以期这种联合治疗能够显著改善癌症的免疫治疗效果,并对未来TCR-T治疗根除多发性癌症提供一些思路。
嵌合抗原受体T细胞
Abstract:
Engineered T cell receptor-T cell (TCR-T) therapy and chimeric antigen receptor-T cell (CAR-T) therapy are currently the two most effective ways of adoptive T cell therapy. Because CAR can only recognize antigens on the surface of tumors, CAR-T therapy has not yet had satisfactory results in the treatment of solid tumors. TCR can not only recognize tumor surface antigens, but also intracellular antigens. Thus TCR-T therapy has shown unprecedented promise in the treatment of solid tumors, and has become an extremely attractive treatment modality. This review described the differences between TCR-T therapy and CAR-T therapy in recognizing cancer antigens, the clinical targets and different types of tumor antigens targeted by current TCR-T therapy, the clinical development status of TCR-T antitumor therapy, and discussed the criteria for preclinical evaluation of TCR titer and the advantages, limitations and possible effective countermeasures of current TCR-T therapy. Finally, we reviewed the current status of TCR-T therapy and some of the challenges, emphasized the importance of targeting tumor-specific antigens, and outlined neoantigen-specific TCR-T treatment strategies combining checkpoint blockage therapy and oncolytic viruses, which we expect will significantly improve cancer immunotherapy and provide some clues for future TCR-T therapy to eradicate multiple types of cancer.
Key words:
Engineered T cell receptor-T cell,
Immunotherapy,
Solid tumors,
Tumor antigens,
Chimeric antigens receptor-T cell
目前各代表性靶点已经进入临床试验阶段的TCR-T治疗方法"
Target
|
Antigen classification
|
HLA
|
Adaptation disease
|
Clinical phase
|
Clinical number
|
Reference
|
MART-1
|
TAA
|
A*0201
|
Melanoma
|
Ⅱ
|
NCT00509288
|
[
28
]
|
gp100
|
TAA
|
A*0201
|
Melanoma
|
Ⅱ
|
NCT00509496
|
[28]
|
CEA
|
TAA
|
A*0201
|
Metastatic colorectal cancer
|
Ⅰ/Ⅱ
|
NCT00923806
|
[
29
]
|
WT1
|
TAA
|
A*0201
|
Acute leukemia/myelodysplastic syndrome
|
Completed
|
NCT02550535
|
[
14
]
|
NY-ESO-1
|
TAA
|
A*0201
|
Metastatic melanoma
|
Ⅱ
|
NCT00670748
|
[
15
]
|
MAGE-A3
|
TAA
|
A*01
|
Metastatic melanoma
|
Ⅰ/Ⅱ
|
NCT01273181
|
[
30
]
|
MAGE-A4
|
TAA
|
A*02
|
Multiple solid tumors
|
Ⅰ
|
NCT03132922
|
[
31
]
|
MAGE-A10
|
TAA
|
A*02
|
Multiple solid tumors
|
Ⅰ
|
NCT02989064/NCT02592577
|
[
32
]
|
HPV E6
|
TSA
|
A*0201
|
HPV-associated carcinoma
|
Ⅰ/Ⅱ
|
NCT02280811
|
[
33
]
|
HPV E7
|
TSA
|
A*0201
|
HPV-associated carcinoma
|
Ⅰ
|
NCT02858310
|
[
26
]
|
p53
|
TAA
|
A*02
|
Breast cancer, melanoma, esophagus cancer
|
Completed
|
NCT00562640
|
[
34
]
|
EBV
|
TSA
|
A*0201
|
Hepatocellular carcinoma
|
Recruiting
|
NCT03899415
|
[
35
]
|
MO Z M, DU P X, WANG G P, et al. The multi-purpose tool of tumor immunotherapy: gene-engineered T cells[J].
J Cancer
,
2017
,
8
(9): 1690-1703.
doi:
10.7150/jca.18681
pmid:
28775789
SCOTT L J. Osimertinib as first-line therapy in advanced NSCLC: a profile of its use[J].
Drugs Ther Perspect
,
2018
,
34
(8): 351-357.
doi:
10.1007/s40267-018-0536-9
WEBER E W, MAUS M V, MACKALL C L. The emerging landscape of immune cell therapies[J].
Cell
,
2020
,
181
(1): 46-62.
doi:
S0092-8674(20)30263-4
pmid:
32243795
JIANG X T, XU J, LIU M F, et al. Adoptive CD8
+
T cell therapy against cancer: challenges and opportunities[J].
Cancer Lett
,
2019
,
462
: 23-32.
doi:
10.1016/j.canlet.2019.07.017
SALTER A I, RAJAN A, KENNEDY J J, et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and
in vivo
function[J].
Sci Signal
,
2021
,
14
(697): eabe2606.
doi:
10.1126/scisignal.abe2606
XU Y Y, YANG Z Y, HORAN L H, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release[J].
Cell Discov
,
2018
,
4
: 62.
doi:
10.1038/s41421-018-0066-6
pmid:
30479831
GARBER K. Driving T-cell immunotherapy to solid tumors[J].
Nat Biotechnol
,
2018
,
36
(3): 215-219.
doi:
10.1038/nbt.4090
pmid:
29509745
CHAPUIS A G, EGAN D N, BAR M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant[J].
Nat Med
,
2019
,
25
(7): 1064-1072.
doi:
10.1038/s41591-019-0472-9
pmid:
31235963
BLÜTHMANN H, KISIELOW P, UEMATSU Y, et al. T-cell-specific deletion of T-cell receptor transgenes allows functional rearrangement of endogenous alpha- and beta-genes[J].
Nature
,
1988
,
334
(6178): 156-159.
doi:
10.1038/334156a0
BUONAGURO L, TAGLIAMONTE M. Selecting target antigens for cancer vaccine development[J].
Vaccines (Basel)
,
2020
,
8
(4): 615.
ZHANG J X, WANG L Y. The emerging world of TCR-T cell trials against cancer: a systematic review[J].
Technol Cancer Res Treat
,
2019
,
18
: 1533033819831068.
ZHAO Q J, JIANG Y, XIANG S X, et al. Engineered TCR-T cell immunotherapy in anticancer precision medicine: pros and cons[J].
Front Immunol
,
2021
,
12
: 658753.
doi:
10.3389/fimmu.2021.658753
HELLMAN L M, FOLEY K C, SINGH N K, et al. Improving T cell receptor on-target specificity via structure-guided design[J].
Mol Ther
,
2019
,
27
(2): 300-313.
doi:
S1525-0016(18)30594-X
pmid:
30617019
TAWARA I, KAGEYAMA S, MIYAHARA Y, et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS[J].
Blood
,
2017
,
130
(18): 1985-1994.
doi:
10.1182/blood-2017-06-791202
pmid:
28860210
ROBBINS P F, MORGAN R A, FELDMAN S A, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1[J].
J Clin Oncol
,
2011
,
29
(7): 917-924.
doi:
10.1200/JCO.2010.32.2537
pmid:
21282551
MORGAN R A, CHINNASAMY N, ABATE-DAGA D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy[J].
J Immunother
,
2013
,
36
(2): 133-151.
doi:
10.1097/CJI.0b013e3182829903
pmid:
23377668
CAMERON B J, GERRY A B, DUKES J, et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells[J].
Sci Transl Med
,
2013
,
5
(197): 197ra103.
YE B X, STARY C M, GAO Q P, et al. Genetically modified T-cell-based adoptive immunotherapy in hematological malignancies[J].
J Immunol Res
,
2017
,
2017
: 5210459.
LIM W A, JUNE C H. The principles of engineering immune cells to treat cancer[J].
Cell
,
2017
,
168
(4): 724-740.
doi:
S0092-8674(17)30064-8
pmid:
28187291
MOORE A R, ROSENBERG S C, MCCORMICK F, et al. RAS-targeted therapies: is the undruggable drugged?[J].
Nat Rev Drug Discov
,
2020
,
19
(8): 533-552.
doi:
10.1038/s41573-020-0068-6
pmid:
32528145
WANG Q J, YU Z Y, GRIFFITH K, et al. Identification of T-cell receptors targeting
KRAS
-mutated human tumors[J].
Cancer Immunol Res
,
2016
,
4
(3): 204-214.
doi:
10.1158/2326-6066.CIR-15-0188
MAOZ A, RENNERT G, GRUBER S B. T-cell transfer therapy targeting mutant
KRAS
[J].
N Engl J Med
,
2017
,
376
(7): e11.
doi:
10.1056/NEJMc1616637
DESAI J, GAN H, BARROW C, et al. Phase Ⅰ, open-label, dose-escalation/dose-expansion study of lifirafenib (BGB-283), an RAF family kinase inhibitor, in patients with solid tumors[J].
J Clin Oncol
,
2020
,
38
(19): 2140-2150.
doi:
10.1200/JCO.19.02654
HOOGEVEEN R C, ROBIDOUX M P, SCHWARZ T, et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection[J].
Gut
,
2019
,
68
(5): 893-904.
doi:
10.1136/gutjnl-2018-316644
pmid:
30580250
JIN B Y, CAMPBELL T E, DRAPER L M, et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model[J].
JCI Insight
,
2018
,
3
(8): e99488.
doi:
10.1172/jci.insight.99488
NAGARSHETH N B, NORBERG S M, SINKOE A L, et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers[J].
Nat Med
,
2021
,
27
(3): 419-425.
doi:
10.1038/s41591-020-01225-1
pmid:
33558725
DRAPER L M, KWONG M L M, GROS A, et al. Targeting of HPV-16
+
epithelial cancer cells by TCR gene engineered T cells directed against E6[J].
Clin Cancer Res
,
2015
,
21
(19): 4431-4439.
doi:
10.1158/1078-0432.CCR-14-3341
JOHNSON L A, MORGAN R A, DUDLEY M E, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen[J].
Blood
,
2009
,
114
(3): 535-546.
doi:
10.1182/blood-2009-03-211714
pmid:
19451549
PARKHURST M R, YANG J C, LANGAN R C, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis[J].
Mol Ther
,
2011
,
19
(3): 620-626.
doi:
10.1038/mt.2010.272
pmid:
21157437
LINETTE G P, STADTMAUER E A, MAUS M V, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma[J].
Blood
,
2013
,
122
(6): 863-871.
doi:
10.1182/blood-2013-03-490565
pmid:
23770775
HONG D S, VAN TINE B A, OLSZANSKI A J, et al. Phase Ⅰ dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors[J].
J Clin Oncol
,
2020
,
38
(15_suppl): 102.
LAM V K, HONG D S, HEYMACH J, et al. Initial safety assessment of MAGE-A10c796 TCR T-cells in two clinical trials[J].
J Clin Oncol
,
2018
,
36
(15_suppl): 3056.
doi:
10.1200/JCO.2018.79.1400
DORAN S L, STEVANOVIĆ S, ADHIKARY S, et al. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase Ⅰ/Ⅱ study[J].
J Clin Oncol
,
2019
,
37
(30): 2759-2768.
doi:
10.1200/JCO.18.02424
DAVIS J L, THEORET M R, ZHENG Z L, et al. Development of human anti-murine T-cell receptor antibodies in both responding and nonresponding patients enrolled in TCR gene therapy trials[J].
Clin Cancer Res
,
2010
,
16
(23): 5852-5861.
doi:
10.1158/1078-0432.CCR-10-1280
pmid:
21138872
KERNEL N N I. TCR-redirected T cells therapy in patient with HBV related HCC[J].
Case Med Res
,
2019
.[Epub ahead of print].
SPEAR T T, EVAVOLD B D, BAKER B M, et al. Understanding TCR affinity, antigen specificity, and cross-reactivity to improve TCR gene-modified T cells for cancer immunotherapy[J].
Cancer Immunol Immunother
,
2019
,
68
(11): 1881-1889.
doi:
10.1007/s00262-019-02401-0
pmid:
31595324
SANDERSON J P, CROWLEY D J, WIEDERMANN G E, et al. Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy[J].
Oncoimmunology
,
2020
,
9
(1): 1682381.
doi:
10.1080/2162402X.2019.1682381
KHONG H T, WANG Q J, ROSENBERG S A. Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression[J].
J Immunother
,
2004
,
27
(3): 184-190.
doi:
10.1097/00002371-200405000-00002
pmid:
15076135
NATHAN P, HASSEL J C, RUTKOWSKI P, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma[J].
N Engl J Med
,
2021
,
385
(13): 1196-1206.
doi:
10.1056/NEJMoa2103485
WALKER A J, MAJZNER R G, ZHANG L, et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase[J].
Mol Ther
,
2017
,
25
(9): 2189-2201.
doi:
S1525-0016(17)30270-8
pmid:
28676342
ROBINSON J, HALLIWELL J A, HAYHURST J D, et al. The IPD and IMGT/HLA database: allele variant databases[J].
Nucleic Acids Res
,
2015
,
43
(Database issue): D423-D431.
doi:
10.1093/nar/gku1161
GONZALEZ-GALARZA F F, MCCABE A, SANTOS E J M D, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools[J].
Nucleic Acids Res
,
2020
,
48
(D1): D783-D788.
GARETTO S, SARDI C, MARTINI E, et al. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model[J].
Oncotarget
,
2016
,
7
(28): 43010-43026.
doi:
10.18632/oncotarget.9280
pmid:
27177227
IDORN M, SKADBORG S K, KELLERMANN L, et al. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model[J].
Oncoimmunology
,
2018
,
7
(8): e1450715.
HU J M, SUN C, BERNATCHEZ C, et al. T-cell homing therapy for reducing regulatory T cells and preserving effector T-cell function in large solid tumors[J].
Clin Cancer Res
,
2018
,
24
(12): 2920-2934.
doi:
10.1158/1078-0432.CCR-17-1365
pmid:
29391351
ADACHI K, KANO Y, NAGAI T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J].
Nat Biotechnol
,
2018
,
36
(4): 346-351.
doi:
10.1038/nbt.4086
pmid:
29505028
FRAIETTA J A, LACEY S F, ORLANDO E J, et al. Author correction: determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia[J].
Nat Med
,
2021
,
27
(3): 561.
doi:
10.1038/s41591-021-01248-2
pmid:
33547459
BECHMAN N, MAHER J. Lymphodepletion strategies to potentiate adoptive T-cell immunotherapy-what are we doing; where are we going?[J].
Expert Opin Biol Ther
,
2021
,
21
(5): 627-637.
doi:
10.1080/14712598.2021.1857361
CHEN J, SUN H W, YANG Y Y, et al. Reprogramming immunosuppressive myeloid cells by activated T cells promotes the response to anti-PD-1 therapy in colorectal cancer[J].
Signal Transduct Target Ther
,
2021
,
6
(1): 4.
KIM J, KANG S, KIM K W, et al. Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy[J].
Biomaterials
,
2022
,
280
: 121257.
doi:
10.1016/j.biomaterials.2021.121257
SAKAI T, TERAKURA S, MIYAO K, et al. Artificial T cell adaptor molecule-transduced TCR-T cells demonstrated improved proliferation only when transduced in a higher intensity[J].
Mol Ther Oncolytics
,
2020
,
18
: 613-622.
doi:
10.1016/j.omto.2020.08.014
ROTH T L, LI P J, BLAESCHKE F, et al. Pooled knockin targeting for genome engineering of cellular immunotherapies[J].
Cell
,
2020
,
181
(3): 728-744.e21.
doi:
S0092-8674(20)30332-9
pmid:
32302591
MARTINEZ M, MOON E K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment[J].
Front Immunol
,
2019
,
10
: 128.
doi:
10.3389/fimmu.2019.00128
pmid:
30804938
NALAWADE S A, SHAFER P, BAJGAIN P, et al. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer[J].
J Immunother Cancer
,
2021
,
9
(11): e003237.
doi:
10.1136/jitc-2021-003237
LIN S H, CHENG L, YE W, et al. Chimeric CTLA4-CD28-CD3z T cells potentiate antitumor activity against CD80/CD86-positive B cell malignancies[J].
Front Immunol
,
2021
,
12
: 642528.
doi:
10.3389/fimmu.2021.642528
NEWICK K, O'BRIEN S, MOON E, et al. CAR T cell therapy for solid tumors[J].
Annu Rev Med
,
2017
,
68
: 139-152.
doi:
10.1146/annurev-med-062315-120245
pmid:
27860544
D’ALOIA M M, ZIZZARI I G, SACCHETTI B, et al. CAR-T cells: the long and winding road to solid tumors[J].
Cell Death Dis
,
2018
,
9
(3): 282.
doi:
10.1038/s41419-018-0278-6
pmid:
29449531
ZHANG B L, QIN D Y, MO Z M, et al. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors[J].
Sci China Life Sci
,
2016
,
59
(4): 340-348.
doi:
10.1007/s11427-016-5027-4
YE B X, SMERIN D, GAO Q P, et al. High-throughput sequencing of the immune repertoire in oncology: applications for clinical diagnosis, monitoring, and immunotherapies[J].
Cancer Lett
,
2018
,
416
: 42-56.
doi:
S0304-3835(17)30789-9
pmid:
29247824
CHEN F J, ZOU Z Y, DU J, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors[J].
J Clin Invest
,
2019
,
129
(5): 2056-2070.
doi:
10.1172/JCI99538
pmid:
30835255
JOGLEKAR A V, LEONARD M T, JEPPSON J D, et al. T cell antigen discovery via signaling and antigen-presenting bifunctional receptors[J].
Nat Methods
,
2019
,
16
(2): 191-198.
doi:
10.1038/s41592-018-0304-8
pmid:
30700902
CHEN X J, PONCETTE L, BLANKENSTEIN T. Human TCR-MHC coevolution after divergence from mice includes increased nontemplate-encoded CDR3 diversity[J].
J Exp Med
,
2017
,
214
(11): 3417-3433.
doi:
10.1084/jem.20161784
KRSHNAN L, PARK S, IM W, et al. A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane[J].
Proc Natl Acad Sci U S A
,
2016
,
113
(43): E6649-E6658.
KNIES D, KLOBUCH S, XUE S A, et al. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells[J].
Oncotarget
,
2016
,
7
(16): 21199-21221.
doi:
10.18632/oncotarget.8385
pmid:
27028870
ARMISTEAD P M. Cellular therapy against public neoantigens[J].
J Clin Invest
,
2019
,
129
(2): 506-508.
doi:
10.1172/JCI126116
pmid:
30640175
LU Y C, ZHENG Z L, LOWERY F J, et al. Direct identification of neoantigen-specific TCRs from tumor specimens by high-throughput single-cell sequencing[J].
J Immunother Cancer
,
2021
,
9
(7): e002595.
doi:
10.1136/jitc-2021-002595
LI S R, HUO F Y, WANG H Q, et al. Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy[J].
J Nanobiotechnology
,
2022
,
20
(1): 277.
doi:
10.1186/s12951-022-01489-4
CADILHA B L, BENMEBAREK M R, DORMAN K, et al. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors[J].
Sci Adv
,
2021
,
7
(24): eabi5781.
doi:
10.1126/sciadv.abi5781
EVGIN L, KOTTKE T, TONNE J, et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice[J].
Sci Transl Med
,
2022
,
14
(640): eabn2231.
doi:
10.1126/scitranslmed.abn2231
PARKHURST M, GROS A, PASETTO A, et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression[J].
Clin Cancer Res
,
2017
,
23
(10): 2491-2505.
doi:
10.1158/1078-0432.CCR-16-2680
pmid:
27827318
MARCU A, BICHMANN L, KUCHENBECKER L, et al. HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy[J].
J Immunother Cancer
,
2021
,
9
(4): e002071.
doi:
10.1136/jitc-2020-002071
HU Z D, ZHU L Y, WANG J, et al. Immune signature of enhanced functional avidity CD8
+
T cells
in vivo
induced by vaccinia vectored vaccine[J].
Sci Rep
,
2017
,
7
: 41558.
doi:
10.1038/srep41558
ALBA J, D‘ABRAMO M. The full model of the pMHC-TCR-CD3 complex: a structural and dynamical characterization of bound and unbound states[J].
Cells
,
2022
,
11
(4): 668.
doi:
10.3390/cells11040668
HE W H, CAO Z L, MAO F F, et al. Modification of three amino acids in sodium taurocholate cotransporting polypeptide renders mice susceptible to infection with hepatitis D virus
in vivo
[J].
J Virol
,
2016
,
90
(19): 8866-8874.
doi:
10.1128/JVI.00901-16
CAO Y Q, LU W Y, SUN R, et al. Anti-CD19 chimeric antigen receptor T cells in combination with nivolumab are safe and effective against relapsed/refractory B-cell non-Hodgkin lymphoma[J].
Front Oncol
,
2019
,
9
: 767.
doi:
10.3389/fonc.2019.00767
pmid:
31482064
王伊玄, 于淼, 赵家旋, 赵芬芳, 曾毅, 王友湧, 祝海川, 张同存, 史江舟.
靶向CD99的CAR-T细胞扩增优化研究
[J]. 中国癌症杂志, 2024, 34(7): 639-649.
刘帅, 张凯, 张晓青, 栾巍.
派安普利单抗联合安罗替尼和化疗围手术期治疗局部进展期胃癌的探索性研究
[J]. 中国癌症杂志, 2024, 34(7): 659-668.
廖梓伊, 彭杨, 曾蓓蕾, 马影颖, 曾丽, 甘科论, 马代远.
局部晚期食管鳞状细胞癌患者新辅助免疫治疗联合化疗后行根治性手术的术后病理学缓解程度及影响因素分析
[J]. 中国癌症杂志, 2024, 34(7): 669-679.
梁滢昀, 陈健华.
溶瘤病毒联合免疫治疗在恶性肿瘤治疗中的应用进展
[J]. 中国癌症杂志, 2024, 34(7): 686-694.
黄思捷, 康勋, 李文斌.
鞘内注射治疗实体瘤脑膜转移的临床研究进展
[J]. 中国癌症杂志, 2024, 34(7): 695-701.
唐楠, 黄慧霞, 刘晓健.
利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型
[J]. 中国癌症杂志, 2024, 34(6): 548-560.
辛美仪, 林玉红, 赵凯.
肿瘤mRNA疫苗及其递送载体在抗肿瘤免疫治疗中的研究进展
[J]. 中国癌症杂志, 2024, 34(5): 509-516.
许永虎, 徐大志.
21世纪以来胃癌治疗进展及未来展望
[J]. 中国癌症杂志, 2024, 34(3): 239-249.