添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
陈乐东, 吴建飞, 王雪松, 郑亦菲, 韩昌霖. 基于改进PSO算法的磁介质带状线小室设计[J]. 电子与信息学报, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 引用本文: 陈乐东, 吴建飞, 王雪松, 郑亦菲, 韩昌霖. 基于改进PSO算法的磁介质带状线小室设计[J]. 电子与信息学报, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 CHEN Ledong, WU Jianfei, WANG Xuesong, ZHENG Yifei, HAN Changlin. Design of a Magnetic IC-stripline Cell Based on an Improved PSO Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 Citation: CHEN Ledong, WU Jianfei, WANG Xuesong, ZHENG Yifei, HAN Changlin. Design of a Magnetic IC-stripline Cell Based on an Improved PSO Algorithm[J]. Journal of Electronics & Information Technology , 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 陈乐东, 吴建飞, 王雪松, 郑亦菲, 韩昌霖. 基于改进PSO算法的磁介质带状线小室设计[J]. 电子与信息学报, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 引用本文: 陈乐东, 吴建飞, 王雪松, 郑亦菲, 韩昌霖. 基于改进PSO算法的磁介质带状线小室设计[J]. 电子与信息学报, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 CHEN Ledong, WU Jianfei, WANG Xuesong, ZHENG Yifei, HAN Changlin. Design of a Magnetic IC-stripline Cell Based on an Improved PSO Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 Citation: CHEN Ledong, WU Jianfei, WANG Xuesong, ZHENG Yifei, HAN Changlin. Design of a Magnetic IC-stripline Cell Based on an Improved PSO Algorithm[J]. Journal of Electronics & Information Technology , 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787 随着越来越多的高频电路被集成到芯片中,高频芯片电磁兼容(IC-EMC)问题越来越突出。带状线小室是测量芯片辐射发射和抗扰度的重要设备,然而带宽是限制其应用的主要因素。该文依据IEC标准,将磁介质吸波材料应用于带状线小室以扩展小室的工作带宽,并提出将粒子群算法(PSO)和二分法相结合的方法,计算磁介质材料的可用电磁参数范围。计算结果表明,磁介质吸波材料可以将带状线小室的工作带宽由0~6 GHz最大扩展到0~10 GHz。测试选用的磁介质吸波材料的电磁参数在0~9 GHz频段内符合计算结果,9 GHz以上频段的参数超出了计算结果范围。应用该材料的带状线小室 S 参数测试结果表明,该材料将带状线小室的工作带宽由0~6 GHz扩展到了0~9 GHz,与计算结果一致,证明了该方法的有效性。与传统方法相比,所提方法的效率提高了73.3%。此外,所提出的方法亦适用于类似目标约束下的参数范围计算问题。 芯片电磁兼容 /  带状线小室 /  吸波材料 /  粒子群算法 Abstract: As an increasing number of high-frequency circuits are integrated into chips, high-frequency Integrated Circuit ElectroMagnetic Compatibility (IC-EMC) problem of chips is becoming increasingly prominent. The IC-Stripline cell is an important device for measuring radiated emission and immunity of integrated chips. However, bandwidth is the major factor limiting its application. According to IEC standard, the paper applies magnetic absorbing materials to the IC-Stripline cell to expand the working bandwidth of the cell, and proposes a method combining Particle Swarm Optimization (PSO) and Dichotomy to calculate the available electromagnetic parameter range of the magnetic absorbing material. Experimental results indicate that the material can improve the operational bandwidth of the IC-Stripline cell from 0~6 GHz to a maximum of 0~10 GHz. The electromagnetic parameters of the selected magnetic absorbing material are consistent with the calculations over the range of 0~9 GHz, while the parameters exceed the calculation results for frequencies >9 GHz. The S parameter measurements of the IC-Stripline cell using this material reveal that the material indeed improves the operational bandwidth from 0~6 GHz to 0~9 GHz, which is consistent with the calculations results and validates the effectiveness of the electromagnetic parameter range determination method. Compared to traditional methods, the efficiency of this method is increased by 73.3%. Furthermore, the proposed method is applicable to parameter range calculation problems under similar objective constraints. Key words: Integrated Circuit ElectroMagnetic Compatibility (IC-EMC) /  IC-Stripline cell /  Absorbing materials /  PSO algorithm  参数数值 $ D $2$ N $5$ {k}_{\mathrm{m}\mathrm{a}\mathrm{x}} $200$ {c}_{1} $1.5$ {c}_{2} $1.5$ {x}_{\mathrm{m}\mathrm{a}\mathrm{x}} $[10 10]$ {x}_{\mathrm{m}\mathrm{i}\mathrm{n}} $[1 0]$ \mathrm{\delta } $0.1$ {W}_{\mathrm{m}\mathrm{a}\mathrm{x}} $0.8$ {W}_{\mathrm{m}\mathrm{i}\mathrm{n}} $0.4$ {v}_{\mathrm{m}\mathrm{a}\mathrm{x}} $[1 1]$ {v}_{\mathrm{m}\mathrm{i}\mathrm{n}} $[–1 –1]$ m $10$ {f}_{1}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right) $6$ {f}_{2}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right) $$ {f}_{1} $+1 袁钟柱, 万发雨. 宽带横电磁波小室设计与测试应用[J]. 南京信息工程大学学报:自然科学版, 2021, 13(4): 437–443. doi: 10.13878/j.cnki.jnuist.2021.04.008

YUAN Zhongzhu and WAN Fayu. Design and test application of broadband TEM cell[J]. Journal of Nanjing University of Information Science & Technology : Natural Science Edition , 2021, 13(4): 437–443. doi: 10.13878/j.cnki.jnuist.2021.04.008 DENG Shaowei, POMMERENKE D, HUBING T, et al . An experimental investigation of higher order mode suppression in TEM cells[J]. IEEE Transactions on Electromagnetic Compatibility , 2008, 50(2): 416–419. doi: 10.1109/TEMC.2008.919028 陈乐东, 吴建飞, 王芳, 等. 基于横向扼流法的宽带带状线小室设计[J]. 电波科学学报, 2023, 38(1): 181–186. doi: 10.12265/j.cjors.2022007

CHEN Ledong, WU Jianfei, WANG Fang, et al . Design of broadband IC-Stripline cell based on transverse choke method[J]. Chinese Journal of Radio Science , 2023, 38(1): 181–186. doi: 10.12265/j.cjors.2022007 宋春江, 冯骁尧, 戴飞. 基于波导缝隙天线的TEM室频率扩展方法[J]. 北京航空航天大学学报, 2018, 44(4): 785–791. doi: 10.13700/j.bh.1001-5965.2017.0296

SONG Chunjiang, FENG Xiaoyao, and DAI Fei. Frequency extension method of TEM cells based on slotted waveguide antenna[J]. Journal of Beijing University of Aeronautics and Astronautics , 2018, 44(4): 785–791. doi: 10.13700/j.bh.1001-5965.2017.0296 GROH C, GARBE H, and KOCH M. Higher order mode behavior in loaded and unloaded TEM cells[C]. 1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No. 99CH36261). Seattle, USA, 1999: 225–230. CRAWFORD M L, WORKMAN J L, and THOMAS C L. Generation of EM susceptibility test fields using a large absorber-loaded TEM cell[J]. IEEE Transactions on Instrumentation and Measurement , 1977, 26(3): 225–230. doi: 10.1109/TIM.1977.4314541 KRAUSE J and MONICH G. FRCTEM cell. Approaches to improve VSWR and to suppress longitudinal components in conical TEM cells[C]. IEEE 1997, EMC, Austin Style. IEEE 1997 International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 97CH36113), Austin, USA, 1997: 54–59. SITTAKUL V, HONGTHONG S, and PASAKAWEE S. Design and analysis of GTEM cell using the ferrite-tile and pylamid absorbers for EMC test in National Institute of Metrology (Thailand)[C]. 2015 IEEE Conference on Antenna Measurements & Applications (CAMA), Chiang Mai, Thailand, 2015: 1–4. PASAKAWEE S and SITTAKUL V. Implementation and characterization of GTEM cell using ferrite tile absorber[C]. 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), Tsukuba, Japan, 2017: 65–68. CHEN L D, WU J F, ZHENG Y F, et al . Methods to expand the bandwidth of the IC-Stripline cell[J]. IEEE Transactions on Instrumentation and Measurement , 2022, 71: 6006608. doi: 10.1109/TIM.2022.3208656 张欢, 雷宏. 线性逆问题中惩罚优化方法信号重建误差界研究[J]. 电子与信息学报, 2019, 41(12): 2939–2944. doi: 10.11999/JEIT181125

ZHANG Huan and LEI Hong. An error bound of signal recovery for penalized programs in linear inverse problems[J]. Journal of Electronics & Information Technology , 2019, 41(12): 2939–2944. doi: 10.11999/JEIT181125 赵斌, 王刚, 宋婧妍, 等. 基于粒子群算法的LCLC谐振变换器优化设计[J]. 电子与信息学报, 2021, 43(6): 1622–1629. doi: 10.11999/JEIT190337

ZHAO Bin, WANG Gang, SONG Jingyan, et al . Optimal design method of the LCLC resonant converter based on particle-swarm-optimization algorithm[J]. Journal of Electronics & Information Technology , 2021, 43(6): 1622–1629. doi: 10.11999/JEIT190337 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007: 185–186.

LIU Shunhua, LIU Junmin, DONG Xinglong, et al . Electromagnetic Wave Shielding and Absorbing Materials[M]. Beijing: Chemical Industry Press, 2007: 185–186.

中国科学院电子学研究所, 北京市2702信箱, 邮编:100190

电话:010-58887066 传真:021-64253812 Email: [email protected]

北京仁和汇智信息技术有限公司