——笔记总结自中国大学MOOC
算术平均数
作用:消除个体标志值之间的差异,体现出总体的一般水平。
计算方法:

加权算术平均数计算公式:
在这里插入图片描述
分组数据中,x表示各组水平值,f代表各组变量值出现的频数。

例子:
在这里插入图片描述
性质:

在这里插入图片描述
优缺点:
优点
推算总体标志总量 进行代数运算 抽样中具有良好的稳定性和可靠性
缺点
受极值影响较大

调和平均数

在这里插入图片描述
加权调和平均数 在这里插入图片描述
调和平均数特点:
受极小值影响相对更大
不能有0
运用相对较窄

几何平均数
1.简单几何平均数
计算公式: 在这里插入图片描述
适用对象:计算平均比率或平均发展速度

2.加权几何平均数
在这里插入图片描述
fi代表各个变量值出现的次数

在这里插入图片描述
几何平均数特点:
受极值影响较算术平均数小
不能有零和负值

在这里插入图片描述
位置平均数
定义:
特殊位置上的数据作为代表值。
常用的位置平均数有中位数、众数。

组距数列计算中位数例子:
某企业50名工人加工零件如下表,计算50名工人日加工零件数的中位数 。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
中位数特点:
不受极值影响
缺乏敏感性

分位数:
处于等分点位置的数值
常用的有四分位数、十分位数和百分位数

在这里插入图片描述
众数:
离散型数据的众数
在这里插入图片描述
数值型分组数据的众数

在这里插入图片描述
众数的特点:
不受极值影响
均匀分布无众数
众数偏向次数较多的组
缺乏敏感性

适度偏态时,有
在这里插入图片描述
皮尔逊经验:众数与算术平均数的距离约为中位数与算术平均数距离的3倍。

例子:
一组技术人员月薪的众数为7000元,算术平均 数为10000元,适度偏斜时中位数近似值是多少?
在这里插入图片描述

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

  • 浏览量 5.6w
  • 收藏 0
  • 0

所有评论(0)