用Python编写一下比较复杂的代码进行工件缺陷检测,能够精确检测出是否有缺陷,不需要训练模型
时间: 2023-08-31 10:31:27
浏览: 51
### 回答1:
好的,我了解了您的问题。通常情况下,我们需要训练一个模型来进行工件缺陷检测,但如果您不想训练模型,可以考虑使用图像处理技术和计算机视觉算法。以下是一个基于Python的简单示例[代码](https://geek.csdn.net/educolumn/1572ef9b473b4e00f6b2bf6d428b7c27?spm=1055.2569.3001.10083):
import cv2
def detect_defect([image](https://geek.csdn.net/educolumn/1defff92b42756fda40b623df99f03da?spm=1055.2569.3001.10083)Path):
# 加载图像
img = cv2.imread([image](https://geek.csdn.net/educolumn/1defff92b42756fda40b623df99f03da?spm=1055.2569.3001.10083)Path)
# 转为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 应用高斯滤波器
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# 应用Canny边缘检测
edges = cv2.Canny(blur, 100, 200)
# 执行霍夫变换检测圆形
circles = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0)
if circles is not None:
# 找到缺陷
return True
else:
# 未找到缺陷
return False
# 测试[代码](https://geek.csdn.net/educolumn/1572ef9b473b4e00f6b2bf6d428b7c27?spm=1055.2569.3001.10083)
if __name__ == '__main__':
[image](https://geek.csdn.net/educolumn/1defff92b42756fda40b623df99f03da?spm=1055.2569.3001.10083)Path = 'test_image.jpg'
defect = detect_defect(imagePath)
if defect:
print('发现缺陷!')
else:
print('没有发现缺陷。')
```