添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

《计算机应用研究》|Application Research of Computers

基于对数欧氏度量学习的概率黎曼空间量化方法

Probabilistic Riemannian quantification method with log-Euclidean metric learning

免费全文下载 (已被下载 次)
获取PDF全文
作者 张晓铖,唐凤珍
机构 1.中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳 110016;2.中国科学院机器人与智能制造创新研究院,沈阳 110169;3.中国科学院大学,北京 100049
统计 摘要被查看 次,已被下载
文章编号 1001-3695(2022)03-003-0661-07
DOI 10.19734/j.issn.1001-3695.2021.09.0353
摘要 在许多机器学习应用中,需要分析的数据可能由对称正定矩阵构成,而经典的欧氏机器学习算法处理这种数据的性能较差。针对此问题,提出一种新的基于对数欧氏度量学习的概率黎曼空间量化方法。该方法将对称正定矩阵看做对数欧氏度量下黎曼流形上的点,采用对数欧氏度量学习距离函数将概率学习矢量量化方法从欧氏空间推广到对称正定黎曼空间。在BCI IV 2a脑电数据集上,该方法相较于概率学习矢量量化方法识别正确率提升20%,高于竞赛第一名;并且计算速度快,模型训练及测试时间分别为基于仿射不变度量的同类型算法的1%和10%。在BCI III IIIa和图像数据集ETH-80上也取得了较好的结果。
关键词 对称正定矩阵; 学习矢量量化; 对数欧氏度量; 黎曼几何; 流形结构
基金项目 国家自然科学基金资助项目(61803369)
中国科学院大学生创新实践训练计划资助项目(E01Z010601)
本文URL http://www.arocmag.com/article/01-2022-03-003.html
英文标题 Probabilistic Riemannian quantification method with log-Euclidean metric learning
作者英文名 Zhang Xiaocheng, Tang Fengzhen
机构英文名 1.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;2.Institutes for Robotics & Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China;3.University of Chinese Academy of Sciences,Beijing 100049,China
英文摘要 In many machine learning applications, the data may be symmetric positive definite(SPD) matrices which are not living in Euclidean space. This paper presented a new probabilistic Riemannian space quantization method based on log-Euclidean metric learning. The proposed method extended the Euclidean probabilistic learning vector quantization(PLVQ) method to deal with SPD matrices by treating them as points on the Riemannian manifold of SPD matrices equipped with log-Euclidean metric, through utilizing a parameterized distance function from log-Euclidean metric learning. On the BCI IV 2a dataset, the proposed method outperformed Euclidean PLVQ by 20% in terms of recognition accuracy. The proposed method also performs better than the first winner of BCI competition IV on this data set. It obtains comparable classification accuracy to PLVQ using affine invariant Riemannian metric, but requires much less computing time, i. e. only needs 1% of the training time, while 10% of the test time. The proposed method also obtains superior performance on the BCI III IIIa and ETH-80 datasets, showing its effectiveness and efficiency.
英文关键词 SPD matrix; LVQ; log-Euclidean metric; Riemannian geometry; manifold structure
参考文献 查看稿件参考文献
收稿日期 2021/9/10
修回日期 2021/10/26
页码 661-667,680
中图分类号 TP391
文献标志码 A