添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • Sánchez Villegas, Danae, D. Preotiuc-Pietro, and N. Aletras (2020) Point-of-Interest Type Inference from Social Media Text Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, Online: Association for Computational Linguistics, pp. 804–810
  • B. Gao and M. W. Spratling (2021) Robust template matching via hierarchical convolutional features from a shape biased CNN , Proceedings of the International Conference on Image, Vision and Intelligent Systems (ICIVIS), Lecture Notes in Electrical Engineering, Vol. 813. Springer, Singapore.
  • G. Lucas, S. Jeub, G. Colavizza, X. Dong et al. (2021) Local2global: Scaling global representation learning on graphs via local training , In KDD 2021 workshop on Deep Learning on Graphs, DLG-KDD’21
  • D. Damen, H. Doughty et al. (2021) The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 43, no. 11, pp. 4125-4141.

  • E. Kazakos, J. Huh, A. Nagrani, A. Zisserman, D. Damen (2021) With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition British Machine Vision Conference (BMVC).

  • E. Kazakos, A. Nagrani, A. Zisserman, D. Damen (2021) Slow-Fast Auditory Streams for Audio Recognition IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

  • A. Fernandez, M. D. Plumbley (2021) Using UMAP to Inspect Audio Data for Unsupervised Anomaly Detection under Domain-Shift Conditions , Proc Detection and Classification of Acoustic Scenes and Events 2021.

  • Ali Akbari et al. (2021) How Does Loss Function Affect Generalization Performance of Deep Learning? Application to Human Age Estimation , ICML, 141-151.

  • D.Stoidis, A. Cavallaro (2021) Protecting Gender and Identity with Disentangled Speech Representations Proc. Interspeech, 1699-1703
  • S.Mensah, K. Sun & N Aletras (2021) An Empirical Study on Leveraging Position Embeddings for Target-oriented Opinion Words Extraction Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, p 9174–9179, Association for Computational Linguistics
  • M. Mamalakis, P. Garg, T. Nelson et al. (2021) MA-SOCRATIS: An automatic pipeline for robust segmentation of the left ventricle and scar Computerized Medical Imaging and Graphics, Volume 93, 101982
  • M. Mamalakis, A. J. Swift, B. Vorselaars et al. (2021) DenResCov-19: A deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays Computerized Medical Imaging and Graphics, Volume 94
  • S. Villegas, Danae, S. Mokaram, and N. Aletras (2021) [ Analyzing Online Political Advertisements ], Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online: Association for Computational Linguistics](https://arxiv.org/abs/2105.04047) pp. 3669–3680

  • S. Villegas, Danae and N. Aletras (2021) Point-of-Interest Type Prediction using Text and Images , in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic: Association for Computational Linguistics pp. 7785–7797.

  • X. Ao, S. Villegas, Danae, D. Preoţiuc-Pietro, and N. Aletras (2022) Combining Humor and Sarcasm for Improving Political Parody Detection Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics , NAACL.

  • A. Alajrami and Nikolaos Aletras (2022) How does the pre-training objective affect what large language models learn about linguistic properties? Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Volume 2, pages 131–147, Dublin, Ireland. Association for Computational Linguistics

  • H.T.Madabushi, E.G.Smith et al. (2022) Improving Tokenisation by Alternative Treatment of Spaces
  • E.G.Smith, M. McConville et al. (2022) Use of Transformer-Based Models for Word-Level Transliteration of the Book of the Dean of Lismore

  • H.T.Madabushi, E.G.Smith et al. (2022) SemEval-2022 Task 2: Multilingual Idiomaticity Detection and Sentence Embedding
  • S. Sarkar, E. Benetos, M.Sandler (2021) Vocal Harmony Separation Using Time-Domain Neural Networks , Proc. Interspeech 2021, 3515-3519, doi: 10.21437/Interspeech.2021-1531

  • H. Kirk, B. Vidgen et al. (2022) Hatemoji: A Test Suite and Adversarially-Generated Dataset for Benchmarking and Detecting Emoji-Based Hate Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1352–1368, Seattle, United States. Association for Computational Linguistics.

  • Frazer, J., Notin, P., Dias, M. et al. (2021) Disease variant prediction with deep generative models of evolutionary data Nature 599, 91–95

  • J Ma, D Damen. Hand-Object Interaction Reasoning. (2022) IEEE Conf. on Advanced Video and Signal-Based Surveillance (AVSS).
  • J. Huang, E. Benetos and S. Ewert (2022) Improving Lyrics Alignment Through Joint Pitch Detection IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 451-455

  • J. Huo, H. Cai, & Q. Meng (2022) Graph Instinctive Attention Convolutional Network for Skeleton-Based Action Recognition . IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1606-1611).

  • L. Jiang, G. Schaefer, & Q. Meng (2022) An Improved Novel View Synthesis Approach Based on Feature Fusion and Channel Attention IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 2459-2464).
  • Y. Zhou, B. Li, J Wang, E. Rocco & Q. Meng (2022) Discovering unknowns: Context-enhanced anomaly detection for curiosity-driven autonomous underwater exploration , Pattern Recognition, 131, p.108860.

  • Nowotny et al. (2022) Loss shaping enhances exact gradient learning with EventProp in Spiking Neural Networks
  • Knight et al. (2022) Neuro-Inspired Computational Elements Conference , Efficient GPU training of LSNNs using eProp.

  • Turner et al. (2022) Neuromorphic Computing and Engineering , Accelerating SNN inference using GPU-enabled neural networks

  • J.C.Reus (2022) In Search of Good Ancestors / Ahnen in Arbeit NordiCHI ‘22: Nordic Human-Computer Interaction Conference. 78.1
  • D.Stoidis, A. Cavallaro (2022) Content-based Graph Privacy Advisor IEEE Eighth International Conference on Multimedia Big Data (BigMM)

  • D.Stoidis, A. Cavallaro (2022) Generating gender-ambiguous voices for privacy-preserving speech recognition Proc. Interspeech, 4237-4241
  • H. Wang, C. Zhu, Z. Ma, C. Oh (2022) Improving Generalization of Deep Networks for Estimating Physical Properties of Containers and Fillings , IEEE Int. Conf. Acoustic, Speech, Sig. Proc. Grand Challenges: Audio-Visual Object Classification For Human-Robot Collaboration (1st rank)
  • Ammarah Farooq et al. (2022) AXM-Net: Implicit Cross-Modal Feature Alignment for Person Re-identification , AAAI, 4477-4485.
  • Akash Rawat et al. (2022) Modelling Political Aggression On Social Media Platforms , The International AAAI Conference on Web and Social Media (ICWSM)

  • M. Pesavento, M. Volino, A. Hilton (2022) Super resolution 3D human shape from a single low resolution image , European conference on computer vision (ECCV22)

  • Abhra Chaudhuri et al. (2022) Relational Proxies: Emergent Relationships as Fine-Grained Discriminators , In the Proceedings of Neural Information Processing Systems (NeurIPS), New Orleans, USA
  • Abhra Chaudhuri et al. (2022) Cross-Modal Fusion Distillation for Fine-Grained Sketch-Based Image Retrieval , In the Proceedings of British Machine Vision Conference (BMVC), London, UK.

  • D. Damen, H. Doughty et al. (2022) Rescaling Egocentric Vision: Collection Pipeline and Challenges for EPIC-KITCHENS-100 , International Journal of Computer Vision (IJCV).

  • W. Price, C. Vondrick, D. Damen (2022) UnweaveNet: Unweaving Activity Stories , IEEE/CVF Computer Vision and Pattern Recognition (CVPR).

  • A. Darkhalil, D. Shan, et al. (2022) EPIC-KITCHENS VISOR Benchmark: VIdeo Segmentations and Object Relations , Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track.
  • S. Joutard, R. Dorent, S.Ourselin, T. Vercauteren, M. Modat (2022) Driving Points Prediction For Abdominal Probabilistic Registration , MLMI

  • B. Gao and M. W. Spratling (2022) Shape-texture debiased training for robust template matching , Sensors, online 22(17), p.6658.
  • B. Gao and M. W. Spratling (2022) More robust object tracking via shape and motion cue integration , Signal Processing, Vol. 199
  • B. Gao and M. W. Spratling (2022) Explaining away results in more robust visual tracking , Vis. Comput
  • M. Mackey (2022) Data-driven Generation of Perturbation Networks for Relative Binding Free Energy Calculations
  • J. Scheen, M. Mackey, J. Michel (2022) Data-driven generation of perturbation networks for relative binding free energy calculations , Digital Discovery, 1, 870-885.

  • Miroslav Suruzhon et al. (2022) Enhancing Ligand and Protein Sampling Using Sequential Monte Carlo , Theory and Computational, 18,6.

  • C. M. Orr et al. (2022) Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility Science Immunology, 7,73.
  • P. Newman and D. D. Martini, I. Posner et al.(2022) Leveraging Translational Invariance of the Fourier Transform for Efficient and Accurate Radar Odometry , International Conference on Robotics and Automation (ICRA), IEEE, 2186-2192

  • S. Gangapurwala, M. Geisert, R. Orsolino et al. (2022) RLOC: terrain-aware legged locomotion using reinforcement learning and optimal control , IEEE Transactions on Robotics, IEEE.

  • Y. Wang, M. Ramezani, M. Mattamala, S.T.’Digumarti & M. Fallon (2022) Strategies for large scale elastic and semantic LiDAR reconstruction , Robotics and Autonomous Systems, 155.

  • A. Proudman, M. Ramezani, S.T. Digumarti, N. Chebrolu & M. Fallon. (2022) Towards real-time forest inventory using handheld LiDAR , Robotics and Autonomous Systems, 157.
  • M. Rigter, B. Lacerda and N.Hawes (2022). RAMBO-RL: Robust adversarial model-based offline reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS).
  • D. Granziol, S. Zohren, S. Roberts (2022). Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training , Journal of Machine Learning Research 23(173):1-65
  • Nicholas P Baskerville et al.(2022) Universal characteristics of deep neural network loss surfaces from random matrix theory Journal of Physics A: Mathematical and Theoretical. 55 494002.

  • C. Lu, T. Willi, A. Letcher, J. Foerster. (2022) Adversarial Cheap Talk Workshop on Machine Learning for Cybersecurity, Decision Awareness in Reinforcement Learning Workshop, ICML
  • C. Lu, J. G. Kuba, A. Letcher et al. (2022) Discovered Policy Optimisation NeurIPS Decision Awareness in Reinforcement Learning Workshop ICML
  • C. Lu, T. Willi, C. S. de Witt, J. Foerster. (2022) Model-Free Opponent Shaping In International Conference on Machine Learning. ICML(Spotlight) (pp. 14398-14411). PMLR.

  • X. Li, W. Armour.(2022) Intensity-Sensitive Similarity Indexes for Image Quality Assessment 26th International Conference on Pattern Recognition, ICPR.
  • L. Li, M. W. Spratling (2023) Data Augmentation Alone Can Improve Adversarial Training , International Conference on Learning Representations (ICLR)
  • L. Li, M. W. Spratling (2023) Understanding and combating robust overfitting via input loss landscape analysis and regularization , Pattern Recognition

  • P. Newman and D. D. Martini, B. Ramtoula et al. (2023) Visual DNA: Representing and Comparing Images using Distributions of Neuron Activations , Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Oliver. J. Melling et al. (2023) Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo , Chemical Theory and Computational, 19,3.

    We are always looking for new ideas and feedback.

    Any questions or comments, please report it via GitHub issue tracker.

    GitHub
  •