1、AHP层次分析法
(1)方法原理及适用场景
AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。
适用场景:层次分析法适用于有多个层次的综合评价中。
(2)操作步骤
使用SPSSAU【综合评价-
AHP层次分析
】。
AHP层次分析法一般用于专家打分,让多位专家对比两两指标,根据相对重要性的打分判断矩阵,然后进行汇总(一般是去掉最大值和最小值,然后计算平均值得到最终的判断矩阵),最终计算得到各因素的权重。
首先用户需要构建判断矩阵,将专家打分结果填入判断矩阵中。如下图所示:
比如指标2相对于指标1的重要性更高,专家打分为3分。那么就在对应的单元格里填入3。
依次将所有打分结果数值填入,点击“开始分析”,即可计算权重及一致性检验结果。
2、优序图法
(1)方法原理及适用场景
优序图法同样是利用了数字大小的相对性,数据上为专家针对各个指标进行大分析。优序图算法上会对指标先进行平均值计算,然后对两两指标进行比较,若指标A比指标B重要,则A得1分;若同等重要,则A得0.5分;若指标B比指标A重要,则A得0分。
适用场景:优序图的计算简单,容易操作,适合有较多指标时使用。
(2)操作步骤
使用SPSSAU【问卷研究-
权重
】。
使用优序图计算权重时,需将数据整理为以下格式:
1个样本为1行,1个计算权重的指标占1列数据即可。即直接使用正常的问卷研究数据即可。SPSSAU默认会首先计算出此各指标的平均值,然后利用平均值进行优序图矩阵的构建。
(1)方法原理及适用场景
熵值法属于一种客观赋值法,其利用数据携带的信息量大小计算权重,得到较为客观的指标权重。熵值是不确定性的一种度量,熵越小,数据携带的信息量越大,权重越大;相反熵越大,信息量越小,权重越小。
适用场景:熵值法广泛应用于各个领域,对于普通问卷数据(截面数据)或面板数据均可计算。在实际研究中,通常情况下是与其他权重计算方法配合使用,如先进行因子或主成分分析得到因子或主成分的权重,即得到高维度的权重,然后再使用熵值法进行计算,想得到具体各项的权重。
(2)操作步骤
使用SPSSAU【综合评价-
熵值法
】。
使用熵值法计算权重时,需将数据整理为以下格式:
1个指标占用1列数据。下图中样本编号只是个编号无实际意义,用于标识下样本的ID号,一般是比如年份一类的数据信息,分析时并不需要使用。
4、CRITIC权重
(1)方法原理及适用场景
CRITIC权重法是一种客观赋权法。其思想在于用于两项指标,分别是对比强度和冲突性指标。对比强度使用标准差进行表示,如果数据标准差越大说明波动越大,权重会越高;冲突性使用相关系数进行表示,如果指标之间的相关系数值越大,说明冲突性越小,那么其权重也就越低。权重计算时,对比强度与冲突性指标相乘,并且进行归一化处理,即得到最终的权重。
适用场景:CRITIC权重综合考虑了数据波动情况和指标间的相关性,因此,CRITIC权重法适用于这样一类数据,即数据稳定性可视作一种信息,并且分析的指标或因素之间有着一定的关联关系时。比如医院里面的指标:出院人数、入出院诊断符合率、治疗有效率、平均床位使用率、病床周转次数共5个指标;此5个指标的稳定性是一种信息,而且此5个指标之间本身就可能有着相关性。因此CRITIC权重法刚好利用数据的波动性(对比强度)和相关性(冲突性)进行权重计算。
(2)操作步骤
使用SPSSAU【综合评价-
CRITIC权重
】。
使用CRITIC权重计算权重时,需将数据整理为以下格式:
1个指标占用1列数据。下图中样本编号只是个编号无实际意义,用于标识下样本的ID号,分析时并不需要使用。
(3)注意事项
CRITIC分析之前是否需要进行量纲化处理?
SPSSAU建议在分析前需要对数据量纲化处理,以便统一数据的单位,避免量纲问题带来的干扰。但是并不建议标准化这种处理方式,原因在于标准化后所有指标的标准差都为1,导致指标变异性全部一致。SPSSAU建议使用正向化或逆向化处理指标进行量纲化处理。
7、主成分分析
(1)方法原理及适用场景
主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。
(2)操作步骤
使用SPSSAU【进阶方法-
主成分分析
】。
如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。
比如本例中,5个指标共提取了2个主成分:
主成分1的权重:45.135%/69.390%=65.05%
主成分2的权重:24.254%/69.390%=34.95%
如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:
第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;
第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;
第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。
8、因子分析
(1)方法原理及适用场景
因子分析与主成分分析计算权重的原理基本一致,区别在于因子分析加带了‘旋转’的功能‘,旋转’功能可以让因子更具有解释意义,如果希望提取出的因子具有可解释性,一般使用因子分析法更多;并非说主成分出来的结果就完全没有可解释性,只是有时候其解释性相对较差而已,但其计算更快,因而受到广泛的应用。
(2)操作步骤
使用SPSSAU【进阶方法-
因子分析
】。
二、第二部分:权重计算的常见问题
1、多种权重计算方法组合使用,如何得到综合权重?
每种权重计算方法都有其适用范围,有时候往往需要采用多种方法测量同一份数据的权重,这样得到综合权重性能更高,更加能反映出数据的真实特征。比如同时使用熵值法和AHP法,
AHP法能够体现专家对不同指标的经验,熵值法可以反映出数据本身提供的信息量特征,两者结合使用不仅可以减少AHP法赋权的主观性,也会减少数据变化导致权重的波动。
第一种情况:两种权重计算方法原理相同,属于同一类方法。
此时可计算平均值,所得结果即为综合权重。例如AHP层次分析法和优序图法,都属于主观赋值法,利用数字大小计算权重,此时可计算两者均值作为综合权重。
第二种情况:两种权重采用的计算原理不相同,利用的数据特征也不一致。
例如用熵值法和AHP法计算权重,一个是主观赋值权重,一个是客观赋值权重。将2种方法结合使得到的数据更加能反映实际情况。公式如下,即A*B/
(A*B的求和)。A、B为2种方法求得的权重。
比如当
t
值取0.3,A1指标综合权重即WA1=0.3*0.1+(1-0.3)*0.2=0.17。其他指标计算过程以此类推。
2、多层级权重如何计算?
在多层次综合评价研究中,不光需要计算方案层权重,还有准则层权重。那么应该如何计算呢?
不论是准测层,还是方案层一般均需要测量权重。然后再手工进行相乘计算得到各方案层最终的权重值。
比如,有这样一个研究需要构建员工绩效评价体系,设计了如上图的评价指标体系,并通过专家打分收集数据。现需要通过AHP法计算各级权重,并使用该评价体系计算每个员工的综合得分情况。
在分析时,每一层的权重需要单独计算。首先使用SPSSAU【综合评价】--【AHP层次分析】计算工作态度下属各个指标的权重。将专家打分结果填入表格。
比如,计算出一级指标权重分别为0.30、0.15、0.30、0.25。二级指标A1权重为0.23,则A1最终权重值为0.30*0.23=0.069。然后使用权重*得分即可得到得到综合得分。
不仅AHP法是这样计算权重,其他方法也同样如此。有一些常用的权重计算方法的搭配组合,比如AHP与熵值法,主成分与熵值法等,AHP或主成分法可能作为一级指标权重的方法。熵值法作为二级指标权重的方法。