本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
代码示例:使用 ResolveChoice、Lambda 和 Lambda 进行数据准备 ApplyMapping
此示例使用的数据集包括从两个
Data.CMS.gov
s3://awsglue-datasets/examples/medicare/Medicare_Hospital_Provider.csv
上的公有 Amazon S3 存储桶。
您可以在示例 GitHub 存储库
data_cleaning_and_lambda.py
的文件中找到此
AWS Glue示例
调试 Python 或 PySpark 脚本最简便的方法是创建一个开发端点并在此端点上运行代码。将生成的数据写入单独的 Apache Parquet 文件以供日后分析。有关更多信息,请参阅 查看开发终端节点属性 。
步骤 1:爬取 Amazon S3 存储桶中的数据
-
登录 AWS Management Console,然后打开 AWS Glue 控制台,网址为: https://console.aws.amazon.com/glue/
-
按照 在 AWS Glue 控制台上使用爬网程序 中描述的过程进行操作,创建新的爬网程序,它可以网络爬取
s3://awsglue-datasets/examples/medicare/Medicare_Hospital_Provider.csv
文件,而且可以将生成的元数据放入 AWS Glue 数据目录中一个名为payments
的数据库。运行新爬网程序,然后检查
payments
数据库。在读取该文件的开头以确定其格式和分隔符之后,您应该发现爬网程序已经在数据库中创建了一个名为medicare
的元数据表。新
medicare
表的架构如下所示:Column name Data type ================================================== drg definition string provider id bigint provider name string provider street address string provider city string provider state string provider zip code bigint hospital referral region description string total discharges bigint average covered charges string average total payments string average medicare payments string
步骤 2:向开发终端节点笔记本中添加样板文件脚本
将以下样板文件脚本粘贴到开发终端节点笔记本中以导入所需的 AWS Glue 库,然后设置单个
GlueContext
:import sys from awsglue.transforms import * from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from awsglue.context import GlueContext from awsglue.job import Job glueContext = GlueContext(SparkContext.getOrCreate())
步骤 3:比较不同的架构解析
接下来,您可以查看由 Apache Spark
medicare = spark.read.format( "com.databricks.spark.csv").option( "header", "true").option( "inferSchema", "true").load( 's3://awsglue-datasets/examples/medicare/Medicare_Hospital_Provider.csv') medicare.printSchema()DataFrame
识别的架构是否与您的 AWS Glue 爬网程序记录的架构相同。运行此代码:下面是来自
|-- DRG Definition: string (nullable = true) |-- Provider Id: string (nullable = true) |-- Provider Name: string (nullable = true) |-- Provider Street Address: string (nullable = true) |-- Provider City: string (nullable = true) |-- Provider State: string (nullable = true) |-- Provider Zip Code: integer (nullable = true) |-- Hospital Referral Region Description: string (nullable = true) |-- Total Discharges : integer (nullable = true) |-- Average Covered Charges : string (nullable = true) |-- Average Total Payments : string (nullable = true) |-- Average Medicare Payments: string (nullable = true)printSchema
调用的输出:接下来,查看 AWS Glue
medicare_dynamicframe = glueContext.create_dynamic_frame.from_catalog( database = "payments", table_name = "medicare") medicare_dynamicframe.printSchema()DynamicFrame
生成的架构:
|-- drg definition: string |-- provider id: choice | |-- long | |-- string |-- provider name: string |-- provider street address: string |-- provider city: string |-- provider state: string |-- provider zip code: long |-- hospital referral region description: string |-- total discharges: long |-- average covered charges: string |-- average total payments: string |-- average medicare payments: stringprintSchema
中的输出如下所示:DynamicFrame
生成一个架构,在其中provider id
可以是long
或string
类型。DataFrame
架构将Provider Id
列为string
类型,数据目录将provider id
列为bigint
类型。哪一个是正确的? 文件末尾有两条记录 (共计 16 万条记录),该列中有
string
值。这些是为说明问题而引入的错误记录。为解决此类问题,AWS Glue
DynamicFrame
引入了 choice 类型的概念。在这种情况下,DynamicFrame
显示long
和string
值都出现在该列中。AWS Glue 爬网程序错过了string
值,因为它仅被视为数据的一个 2 MB 前缀。Apache SparkDataFrame
考虑了整个数据集,但它被迫将最一般的类型分配给该列,即string
。事实上,当存在复杂类型或不熟悉的变体时,Spark 通常会采用最一般的情况。要查询
medicare_res = medicare_dynamicframe.resolveChoice(specs = [('provider id','cast:long')]) medicare_res.printSchema()provider id
列,请先解析选择类型。您可以在DynamicFrame
中使用resolveChoice
转换方法,通过cast:long
选项将这些string
值转换为long
值:
|-- drg definition: string |-- provider id: long |-- provider name: string |-- provider street address: string |-- provider city: string |-- provider state: string |-- provider zip code: long |-- hospital referral region description: string |-- total discharges: long |-- average covered charges: string |-- average total payments: string |-- average medicare payments: stringprintSchema
输出现在是:其中,该值是无法强制转换的
string
,AWS Glue 插入了一个null
。另一个选项是将选择类型转换为一个
struct
,以保持两种类型的值。接下来,查看异常的行:
medicare_res.toDF().where("'provider id' is NULL").show()您看到以下内容:
+--------------------+-----------+---------------+-----------------------+-------------+--------------+-----------------+------------------------------------+----------------+-----------------------+----------------------+-------------------------+ | drg definition|provider id| provider name|provider street address|provider city|provider state|provider zip code|hospital referral region description|total discharges|average covered charges|average total payments|average medicare payments| +--------------------+-----------+---------------+-----------------------+-------------+--------------+-----------------+------------------------------------+----------------+-----------------------+----------------------+-------------------------+ |948 - SIGNS & SYM...| null| INC| 1050 DIVISION ST| MAUSTON| WI| 53948| WI - Madison| 12| $11961.41| $4619.00| $3775.33| |948 - SIGNS & SYM...| null| INC- ST JOSEPH| 5000 W CHAMBERS ST| MILWAUKEE| WI| 53210| WI - Milwaukee| 14| $10514.28| $5562.50| $4522.78| +--------------------+-----------+---------------+-----------------------+-------------+--------------+-----------------+------------------------------------+----------------+-----------------------+----------------------+-------------------------+现在,删除两个格式错误的记录,如下所示:
medicare_dataframe = medicare_res.toDF() medicare_dataframe = medicare_dataframe.where("'provider id' is NOT NULL")
步骤 4:映射数据和使用 Apache Spark Lambda 函数
AWS Glue 尚未直接支持 Lambda 函数,也称为用户定义函数。但是,您始终可以将
DynamicFrame
和 Apache SparkDataFrame
相互转换,以便除DynamicFrames
的特殊功能外,还能利用 Spark 功能。接下来,将付款信息转化为数字,以便 Amazon Redshift 或 Amazon Athena 这样的分析引擎可以更快地进行数字处理:
from pyspark.sql.functions import udf from pyspark.sql.types import StringType chop_f = udf(lambda x: x[1:], StringType()) medicare_dataframe = medicare_dataframe.withColumn( "ACC", chop_f( medicare_dataframe["average covered charges"])).withColumn( "ATP", chop_f( medicare_dataframe["average total payments"])).withColumn( "AMP", chop_f( medicare_dataframe["average medicare payments"])) medicare_dataframe.select(['ACC', 'ATP', 'AMP']).show()
show
调用中的输出如下所示:+--------+-------+-------+ | ACC| ATP| AMP| +--------+-------+-------+ |32963.07|5777.24|4763.73| |15131.85|5787.57|4976.71| |37560.37|5434.95|4453.79| |13998.28|5417.56|4129.16| |31633.27|5658.33|4851.44| |16920.79|6653.80|5374.14| |11977.13|5834.74|4761.41| |35841.09|8031.12|5858.50| |28523.39|6113.38|5228.40| |75233.38|5541.05|4386.94| |67327.92|5461.57|4493.57| |39607.28|5356.28|4408.20| |22862.23|5374.65|4186.02| |31110.85|5366.23|4376.23| |25411.33|5282.93|4383.73| | 9234.51|5676.55|4509.11| |15895.85|5930.11|3972.85| |19721.16|6192.54|5179.38| |10710.88|4968.00|3898.88| |51343.75|5996.00|4962.45| +--------+-------+-------+ only showing top 20 rows
这些仍然是数据中的字符串。我们可以使用强大的
apply_mapping
转换方法来删除、重命名、转换和嵌套数据,以便其他数据编程语言和系统可以轻松地访问它:from awsglue.dynamicframe import DynamicFrame medicare_tmp_dyf = DynamicFrame.fromDF(medicare_dataframe, glueContext, "nested") medicare_nest_dyf = medicare_tmp_dyf.apply_mapping([('drg definition', 'string', 'drg', 'string'), ('provider id', 'long', 'provider.id', 'long'), ('provider name', 'string', 'provider.name', 'string'), ('provider city', 'string', 'provider.city', 'string'), ('provider state', 'string', 'provider.state', 'string'), ('provider zip code', 'long', 'provider.zip', 'long'), ('hospital referral region description', 'string','rr', 'string'), ('ACC', 'string', 'charges.covered', 'double'), ('ATP', 'string', 'charges.total_pay', 'double'), ('AMP', 'string', 'charges.medicare_pay', 'double')]) medicare_nest_dyf.printSchema()
|-- drg: string |-- provider: struct | |-- id: long | |-- name: string | |-- city: string | |-- state: string | |-- zip: long |-- rr: string |-- charges: struct | |-- covered: double | |-- total_pay: double | |-- medicare_pay: doubleprintSchema
输出如下所示:将数据重新变成 Spark
DataFrame
后,您可以显示它现在的外观:medicare_nest_dyf.toDF().show()
您可以在一个 (扩展) 代码行中执行所有这些操作:
+--------------------+--------------------+---------------+--------------------+ | drg| provider| rr| charges| +--------------------+--------------------+---------------+--------------------+ |039 - EXTRACRANIA...|[10001,SOUTHEAST ...| AL - Dothan|[32963.07,5777.24...| |039 - EXTRACRANIA...|[10005,MARSHALL M...|AL - Birmingham|[15131.85,5787.57...| |039 - EXTRACRANIA...|[10006,ELIZA COFF...|AL - Birmingham|[37560.37,5434.95...| |039 - EXTRACRANIA...|[10011,ST VINCENT...|AL - Birmingham|[13998.28,5417.56...| |039 - EXTRACRANIA...|[10016,SHELBY BAP...|AL - Birmingham|[31633.27,5658.33...| |039 - EXTRACRANIA...|[10023,BAPTIST ME...|AL - Montgomery|[16920.79,6653.8,...| |039 - EXTRACRANIA...|[10029,EAST ALABA...|AL - Birmingham|[11977.13,5834.74...| |039 - EXTRACRANIA...|[10033,UNIVERSITY...|AL - Birmingham|[35841.09,8031.12...| |039 - EXTRACRANIA...|[10039,HUNTSVILLE...|AL - Huntsville|[28523.39,6113.38...| |039 - EXTRACRANIA...|[10040,GADSDEN RE...|AL - Birmingham|[75233.38,5541.05...| |039 - EXTRACRANIA...|[10046,RIVERVIEW ...|AL - Birmingham|[67327.92,5461.57...| |039 - EXTRACRANIA...|[10055,FLOWERS HO...| AL - Dothan|[39607.28,5356.28...| |039 - EXTRACRANIA...|[10056,ST VINCENT...|AL - Birmingham|[22862.23,5374.65...| |039 - EXTRACRANIA...|[10078,NORTHEAST ...|AL - Birmingham|[31110.85,5366.23...| |039 - EXTRACRANIA...|[10083,SOUTH BALD...| AL - Mobile|[25411.33,5282.93...| |039 - EXTRACRANIA...|[10085,DECATUR GE...|AL - Huntsville|[9234.51,5676.55,...| |039 - EXTRACRANIA...|[10090,PROVIDENCE...| AL - Mobile|[15895.85,5930.11...| |039 - EXTRACRANIA...|[10092,D C H REGI...|AL - Tuscaloosa|[19721.16,6192.54...| |039 - EXTRACRANIA...|[10100,THOMAS HOS...| AL - Mobile|[10710.88,4968.0,...| |039 - EXTRACRANIA...|[10103,BAPTIST ME...|AL - Birmingham|[51343.75,5996.0,...| +--------------------+--------------------+---------------+--------------------+ only showing top 20 rows
步骤 5:将数据写入到 Apache Parquet
有了 AWS Glue,可以很容易地以诸如 Apache Parquet 这样的格式编写数据,以便关系数据库可以有效地使用它:
glueContext.write_dynamic_frame.from_options(