添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
杨标, 朱圣棋, 余昆, 房云飞. 贪婪的量测划分机制下的多传感器多机动目标跟踪算法[J]. 电子与信息学报, 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 引用本文: 杨标, 朱圣棋, 余昆, 房云飞. 贪婪的量测划分机制下的多传感器多机动目标跟踪算法[J]. 电子与信息学报, 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 Biao YANG, Shengqi ZHU, Kun YU, Yunfei FANG. Multi-sensor Multiple Maneuvering Targets Tracking Algorithm under Greedy Measurement Partitioning Mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 Citation: Biao YANG, Shengqi ZHU, Kun YU, Yunfei FANG. Multi-sensor Multiple Maneuvering Targets Tracking Algorithm under Greedy Measurement Partitioning Mechanism[J]. Journal of Electronics & Information Technology , 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 杨标, 朱圣棋, 余昆, 房云飞. 贪婪的量测划分机制下的多传感器多机动目标跟踪算法[J]. 电子与信息学报, 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 引用本文: 杨标, 朱圣棋, 余昆, 房云飞. 贪婪的量测划分机制下的多传感器多机动目标跟踪算法[J]. 电子与信息学报, 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 Biao YANG, Shengqi ZHU, Kun YU, Yunfei FANG. Multi-sensor Multiple Maneuvering Targets Tracking Algorithm under Greedy Measurement Partitioning Mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 Citation: Biao YANG, Shengqi ZHU, Kun YU, Yunfei FANG. Multi-sensor Multiple Maneuvering Targets Tracking Algorithm under Greedy Measurement Partitioning Mechanism[J]. Journal of Electronics & Information Technology , 2021, 43(7): 1962-1969. doi: 10.11999/JEIT200498 作者简介:

杨标:男,1993年生,博士生,研究方向为动目标参数估计、多目标跟踪、随机有限集

朱圣棋:男,1984年生,教授,博士生导师,研究方向为新体制雷达信号处理、高速运动平台雷达运动目标检测与抗干扰、机载/星载合成孔径雷达成像、雷达运动目标参数估计以及成像

余昆:男,1995年生,博士生,研究方向为阵列信号处理、机载/星载合成孔径雷达成像、动目标检测

房云飞:男,1991年生,博士生,研究方向为阵列信号处理、DOA估计、动目标检测

通讯作者: 朱圣棋 [email protected]

中图分类号: TN911.73; TP391

针对低检测概率下多机动目标的跟踪问题,该文提出一种新的交互式多传感器多目标多伯努利滤波器(IMM-MS-MeMBer)。在IMM-MS-MeMBer滤波器的预测阶段,该文利用当前的量测信息自适应地更新目标的模型概率,并利用更新后的模型概率对目标状态进行混合预测;在IMM-MS-MeMBer滤波器的更新阶段,使用贪婪的多传感器量测划分策略对多传感器量测进行划分,并利用得到的量测划分集合和IMM-MS-MeMBer滤波器对目标的后验概率密度进行更新;除此之外,IMM-MS-MeMBer滤波器能够利用目标的角度和多普勒量测信息同时实现多个机动目标的位置、速度估计。数值实验验证了该文所提IMM-MS-MeMBer滤波器的优越性能。 交互式多模型 /  机动目标 /  多传感器 /  多目标多伯努利滤波 / Abstract: A novel method Interacting Multiple Mode Multi-Sensor Multi-target Multi-Bernoulli (IMM-MS-MeMBer) filter to track multiple maneuvering targets in low detection probability scenario is proposed. At the prediction stage of the IMM-MS-MeMBer filter, model probability of the target is adaptively updated by utilizing the current measurement information, and then the mixed prediction of the target state is executed; At the update stage of the IMM-MS-MeMBer filter, the greedy multi-sensor measurement partitioning strategy is employed in measurement partition step, the posterior probability density of the target is updated by using the divided set of measurements and the IMM-MS-MeMBer filter; In addition, the IMM-MS-MeMBer filter utilizes the target angle and Doppler information to realize the simultaneous estimation of the position and speed of multiple maneuvering targets. Numerical experiments verify the superior performance of the IMM-MS-MeMBer filter. Key words: Interactive multiple model /  Maneuvering target /  Multi-sensor /  Multi-target multi-Bernoulli filtering /  Greedy algorithm  彭华甫, 黄高明, 田威. 随机有限集理论及其在多目标跟踪中的应用和实现[J]. 控制与决策, 2019, 34(2): 225–232. doi: 10.13195/j.kzyjc.2017.1326

PENG Huafu, HUANG Gaoming, and TIAN Wei. Random finite set: Theory, application and implementation for multi-target tracking[J]. Control and Decision , 2019, 34(2): 225–232. doi: 10.13195/j.kzyjc.2017.1326 陈辉, 韩崇昭. 机动多目标跟踪中的传感器控制策略的研究[J]. 自动化学报, 2016, 42(4): 512–523. doi: 10.16383/j.aas.2016.c150529

CHEN Hui and HAN Chongzhao. Sensor control strategy for maneuvering multi-target tracking[J]. Acta Automatica Sinica , 2016, 42(4): 512–523. doi: 10.16383/j.aas.2016.c150529 江同洋, 刘妹琴, 张森林. 非线性多模型多伯努利滤波器的实现[J]. 华中科技大学学报: 自然科学版, 2015, 43(9): 7–12, 18. doi: 10.13245/j.hust.150902

JIANG Tongyang, LIU Meiqin, and ZHANG Senlin. Implementation of multiple-model multi-Bernoulli filter for nonlinear models[J]. Journal of Huazhong University of Science and Technology : Natural Science Edition , 2015, 43(9): 7–12, 18. doi: 10.13245/j.hust.150902 杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3): 634–639. doi: 10.11999/JEIT160467

YANG Feng and ZHANG Wanying. Multiple model bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics & Information Technology , 2017, 39(3): 634–639. doi: 10.11999/JEIT160467 许红, 谢文冲, 袁华东, 等. 基于自适应的增广状态-交互式多模型的机动目标跟踪算法[J]. 电子与信息学报, 2020, 42(11): 2749–2755. doi: 10.11999/JEIT190516

XU Hong, XIE Wenchong, YUAN Huadong, et al . Maneuvering target tracking algorithm based on the adaptive augmented state interracting multiple model[J]. Journal of Electronics & Information Technology , 2020, 42(11): 2749–2755. doi: 10.11999/JEIT190516 夏小虎, 刘明. 联合约束级联交互式多模型滤波器及其在机动目标跟踪中的应用[J]. 电子与信息学报, 2017, 39(1): 117–123. doi: 10.11999/JEIT160384

XIA Xiaohu and LIU Ming. Unified constrained cascade interactive multi-model filter and its application in tracking of manoeuvring target[J]. Journal of Electronics & Information Technology , 2017, 39(1): 117–123. doi: 10.11999/JEIT160384 QIU Jing, XING Zirui, ZHU Chunsheng, et al . Centralized fusion based on interacting multiple model and adaptive Kalman filter for target tracking in underwater acoustic sensor networks[J]. IEEE Access , 2019, 7: 25948–25958. doi: 10.1109/ACCESS.2019.2899012 刘悄然, 杨训. 基于改进的交互式多模型粒子滤波算法[J]. 西北工业大学学报, 2018, 36(1): 169–175. doi: 10.1051/jnwpu/20183610169

LIU Qiaoran and YANG Xun. Improved interacting multiple model particle filter algorithm[J]. Journal of Northwestern Polytechnical University , 2018, 36(1): 169–175. doi: 10.1051/jnwpu/20183610169 MAHLER R. The multisensor PHD filter: I. General solution via multitarget calculus[C]. SPIE 7336, Signal Processing, Sensor Fusion, and Target Recognition XVIII, Orlando, USA, 2009: 73360E. doi: 10.1117/12.818024 . DELANDE E, DUFLOS E, HEURGUIER D, et al. Multi-target PHD filtering: Proposition of extensions to the multi-sensor case[R]. RR-7337. Lille, France: INRIA, 2010: 1–69. TOBIAS M and LANTERMAN A D. Multitarget tracking using multiple bistatic range measurements with probability hypothesis densities[C]. SPIE 5429, Signal Processing, Sensor Fusion, and Target Recognition XIII, Orlando, USA, 2004: 296–305. doi: 10.1117/12.544027 . BATTISTELLI G, CHISCI L, MORROCCHI S, et al . Robust multisensor multitarget tracker with application to passive multistatic radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems , 2012, 48(4): 3450–3472. doi: 10.1109/taes.2012.6324726 NANNURU S, BLOUIN S, COATES M, et al . Multisensor CPHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems , 2016, 52(4): 1834–1854. doi: 10.1109/TAES.2016.150265 SAUCAN A A, COATES M J, and RABBAT M. A multisensor multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing , 2017, 65(20): 5495–5509. doi: 10.1109/TSP.2017.2723348 ARULAMPALAM M S, MASKELL S, GORDON N, et al . A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing , 2002, 50(2): 174–188. doi: 10.1109/78.978374

中国科学院电子学研究所, 北京市2702信箱, 邮编:100190

电话:010-58887066 传真:021-64253812 Email: [email protected]

北京仁和汇智信息技术有限公司