Java8 stream 中利用 groupingBy 进行多字段分组求和案例
java8的groupingBy实现集合的分组,类似mysql的group by分组功能,注意得到的是一个map
对集合按照单个属性分组、分组计数、排序
List
items =
Arrays.asList("apple", "apple", "banana",
"apple", "orange", "banana", "papaya");
// 分组
Map
> result1 = items.stream().collect(
Collectors.groupingBy(
Function.identity()
)
);
//{papaya=[papaya], orange=[orange], banana=[banana, banana], apple=[apple, apple, apple]}
System.out.println(result1);
// 分组计数
Map
result2 = items.stream().collect(
Collectors.groupingBy(
Function.identity(), Collectors.counting()
)
);
// {papaya=1, orange=1, banana=2, apple=3}
System.out.println(result2);
Map
finalMap = new LinkedHashMap<>();
//分组, 计数和排序
result2.entrySet().stream()
.sorted(Map.Entry.
comparingByValue().reversed())
.forEachOrdered(e -> finalMap.put(e.getKey(), e.getValue()));
// {apple=3, banana=2, papaya=1, orange=1}
System.out.println(finalMap);
集合按照多个属性分组
1.多个属性拼接出一个组合属性
public static void main(String[] args) {
User user1 = new User("zhangsan", "beijing", 10);
User user2 = new User("zhangsan", "beijing", 20);
User user3 = new User("lisi", "shanghai", 30);
List
list = new ArrayList
();
list.add(user1);
list.add(user2);
list.add(user3);
Map
> collect = list.stream().collect(Collectors.groupingBy(e -> fetchGroupKey(e)));
//{zhangsan#beijing=[User{age=10, name='zhangsan', address='beijing'}, User{age=20, name='zhangsan', address='beijing'}],
// lisi#shanghai=[User{age=30, name='lisi', address='shanghai'}]}
System.out.println(collect);
}
private static String fetchGroupKey(User user){
return user.getName() +"#"+ user.getAddress();
}
2.嵌套调用groupBy
User user1 = new User("zhangsan", "beijing", 10);
User user2 = new User("zhangsan", "beijing", 20);
User user3 = new User("lisi", "shanghai", 30);
List
list = new ArrayList
();
list.add(user1);
list.add(user2);
list.add(user3);
Map
>> collect
= list.stream().collect(
Collectors.groupingBy(
User::getAddress, Collectors.groupingBy(User::getName)
)
);
System.out.println(collect);
3. 使用Arrays.asList
我有一个与Web访问记录相关的域对象列表。这些域对象可以扩展到数千个。
我没有资源或需求将它们以原始格式存储在数据库中,因此我希望预先计算聚合并将聚合的数据放在数据库中。
我需要聚合在5分钟窗口中传输的总字节数,如下面的sql查询
select
round(request_timestamp, '5') as window, --round timestamp to the nearest 5 minute
cdn,
isp,
http_result_code,
transaction_time,
sum(bytes_transferred)
from web_records
group by
round(request_timestamp, '5'),
cdn,
isp,
http_result_code,
transaction_time
在java 8中,我当前的第一次尝试是这样的,我知道这个解决方案类似于Group by multiple field names in java 8
Map
>>>>>> aggregatedData =
webRecords
.stream()
.collect(Collectors.groupingBy(WebRecord::getFiveMinuteWindow,
Collectors.groupingBy(WebRecord::getCdn,
Collectors.groupingBy(WebRecord::getIsp,
Collectors.groupingBy(WebRecord::getResultCode,
Collectors.groupingBy(WebRecord::getTxnTime,
Collectors.reducing(0,
WebRecord::getReqBytes(),
Integer::sum)))))));
这是可行的,但它是丑陋的,所有这些嵌套的地图是一个噩梦!要将地图“展平”或“展开”成行,我必须这样做
for (Date window : aggregatedData.keySet()) {
for (String cdn : aggregatedData.get(window).keySet()) {
for (String isp : aggregatedData.get(window).get(cdn).keySet()) {
for (String resultCode : aggregatedData.get(window).get(cdn).get(isp).keySet()) {
for (String txnTime : aggregatedData.get(window).get(cdn).get(isp).get(resultCode).keySet()) {
Integer bytesTransferred = aggregatedData.get(window).get(cdn).get(distId).get(isp).get(resultCode).get(txnTime);
AggregatedRow row = new AggregatedRow(window, cdn, distId..HlTlZTLC.
如你所见,这是相当混乱和难以维持。
有谁知道更好的方法吗?任何帮助都将不胜感激。
我想知道是否有更好的方法来展开嵌套的映射,或者是否有一个库允许您对集合进行分组。
最佳答案
您应该为地图创建自定义密钥。最简单的方法是使用Arrays.asList:
Function
> keyExtractor = wr ->
Arrays.
wr.getResultCode(), wr.getTxnTime());
Map
, Integer> aggregatedData = webRecords.stream().collect(
Collectors.groupingBy(keyExtractor, Collectors.summingInt(WebRecord::getReqBytes)));
在这种情况下,键是按固定顺序列出的5个元素。不是很面向对象,但很简单。或者,您可以定义自己的表示自定义键的类型,并创建适当的hashCode/equals实现。
补充知识:java8 新特性 Stream流 分组 排序 过滤 多条件去重 (最小、最大、平均、求和)
什么是 Stream?
Stream 是用函数式编程方式在集合类上进行复杂操作的工具,其集成了Java 8中的众多新特性之一的聚合操作,开发者可以更容易地使用Lambda表达式,并且更方便地实现对集合的查找、遍历、过滤以及常见计算等。话不多说,直接上代码。
List
list = new ArrayList
();
list = Arrays.asList(
new User("小强", 11, "男"),
new User("小玲", 15, "女"),
new User("小虎", 23, "男"),
new User("小雨", 26, "女"),
new User("小飞", 19, "男"),
new User("小玲", 15, "女")
);
//分组
Map
> listMap = list.stream().collect(Collectors.groupingBy(User::getSex));
for(String key:listMap.keySet()){
System.out.print(key+"组:");
listMap.get(key).forEach(user -> System.out.print(user.getName()));
System.out.println();
}
//排序
list.streamhttp://().sorted(Comparator.comparing(user-> user.getAge()))
.forEach(user -> System.out.println(user.getName()));
//过滤
list.stream().filter(user -> user.getSex().equals("男")).collect(Collectors.toList())
.forEach(user -> System.out.println(user.getName()));
//多条件去重
list.stream().collect(Collectors.collectingAndThen(
Collectors.toCollection(() -> new TreeSet<>(
Comparator.comparing(user -> user.getAge() + ";" + user.getName()))), ArrayList::new))
.forEach(user -> System.out.println(user.getName()));
//最小值
Integer min = list.stream().mapToInt(User::getAge).min().getAsInt();
//最大值
Integer max = list.stream().mapToInt(User::getAge).max().getAsInt();
//平均值
Double average = list.stream().mapToInt(User::getAge).average().getAsDouble();
//和
Integer sum = list.stream().mapToInt(User::getAge).sum();
System.out.println("最小值:"+min+", 最大值"+max+", 平均值:"+average+", 和:"+sum);
//分组求和
Map
collect = list.stream().collect(Collectors.groupingBy(User::getSex, Collectors.summarizingInt(User::getAge)));
IntSummaryStatistics statistics1 = collect.get("男");
IntSummaryStatistics statistics2 = collect.get("女");
System.out.println(statistics1.getSum());
System.out.println(statistics1.getAverage());
System.out.println(statistics1.getMax());
System.out.println(statistics1.getMin());
System.out.println(statistics1.getCount());
System.out.println(statistics2.getSum());
System.out.println(statistics2.getAverage());
System.out.println(statistics2.getMax());
System.out.println(statistics2.getMin());
System.out.println(statistics2.getCount());
//提取list中两个属性值,转为map
Map
userMap = list.stream().collect(Collectors.toMap(User::getName, User::getSex));
System.out.println(jsonUtil.toJson(userMap))
//取出所有名字
List
names = list.stream().map(User::getName).collect(Collectors.toList());
System.out.println(JsonUtil.toJson(names))
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们[email protected] 处理,核实后本网站将在24小时内删除侵权内容。