python机器学习实战(二)
原文链接: https://www.cnblogs.com/fydeblog/p/7159775.html
前言
这篇notebook是关于机器学习监督学习中的 决策树算法 ,内容包括决策树算法的 构造过程 ,使用 matplotlib库绘制树形图 以及使用 决策树预测隐形眼睛类型 . 操作系统:ubuntu14.04(win也ok) 运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码 notebook writer ----方阳
注意事项 :在这里说一句,默认环境python2.7的notebook,用python3.6的会出问题,还有我的目录可能跟你们的不一样,你们自己跑的时候记得改目录,我会把notebook和代码以及数据集放到结尾的百度云盘,方便你们下载!
决策树原理 :不断通过数据集的特征来划分数据集,直到遍历所有划分数据集的属性,或每个分支下的实例都具有相同的分类,决策树算法停止运行。
决策树的优缺点及适用类型:
- 优点 :计算复杂度不高, 输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
- 缺点 :可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
先举一个小例子,让你了解决策树是干嘛的,简单来说,决策树算法就是一种基于特征的分类器,拿邮件来说吧,试想一下,邮件的类型有很多种,有需要及时处理的邮件,无聊时观看的邮件,垃圾邮件等等,我们需要去区分这些,比如根据邮件中出现里你的名字还有你朋友的名字,这些特征就会就可以将邮件分成两类,需要及时处理的邮件和其他邮件,这时候在分类其他邮件,例如邮件中出现buy,money等特征,说明这是垃圾推广文件,又可以将其他文件分成无聊是观看的邮件和垃圾邮件了。
1.决策树的构造
1.1 信息增益
试想一下,一个数据集是有多个特征的,我们该从那个特征开始划分呢,什么样的划分方式会是最好的?
我们知道划分数据集的大原则是将无序的数据变得更加有序,这样才能分类得更加清楚,这里就提出了一种概念,叫做信息增益,它的定义是在划分数据集之前之后信息发生的变化,变化越大,证明划分得越好,所以在划分数据集的时候,获得增益最高的特征就是最好的选择。
这里又会扯到另一个概念,信息论中的熵,它是集合信息的度量方式,熵变化越大,信息增益也就越大。信息增益是熵的减少或者是数据无序度的减少.
一个符号x在信息论中的信息定义是 l(x)= -log(p(x)) ,这里都是以2为底,不再复述。
则熵的计算公式是 H =-∑p(xi)log(p(xi)) (i=1,2,..n)
下面开始实现给定数据集,计算熵。
参考代码:
from math import log #we use log function to calculate the entropy
import operator
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet: #the the number of unique elements and their occurance
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
程序思路:
- 首先计算数据集中实例的总数,由于代码中多次用到这个值,为了提高代码效率,我们显式地声明一个变量保存实例总数。
- 然后 ,创建一个数据字典labelCounts,它的键值是最后一列(分类的结果)的数值.如果当前键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
- 最后 , 使用所有类标签的发生频率计算类别出现的概率。我们将用这个概率计算香农熵。
让我们来测试一下,先自己定义一个数据集。
下表的数据包含 5 个海洋动物,特征包括:不浮出水面是否可以生存,以及是否有脚蹼。我们可以将这些动物分成两类: 鱼类和非鱼类。
根据上面的表格,我们可以定义一个createDataSet函数。
参考代码如下:
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers']
#change to discrete values
return dataSet, labels
把所有的代码都放在trees.py中(以下在jupyter)
cd /home/fangyang/桌面/machinelearninginaction/Ch03
/home/fangyang/桌面/machinelearninginaction/Ch03
import trees
myDat, labels = trees.createDataSet()
myDat #old data set
1, 1, 'yes', 1, 1, 'yes', 1, 0, 'no', 0, 1, 'no', 0, 1, 'no'
labels
'no surfacing', 'flippers'
trees.calcShannonEnt(myDat) #calculate the entropy
0.9709505944546686
myDat[0][-1]='maybe' #change the result ,and look again the entropy
myDat #new data set
1, 1, 'maybe', 1, 1, 'yes', 1, 0, 'no', 0, 1, 'no', 0, 1, 'no'
trees.calcShannonEnt(myDat) # the new entropy
1.3709505944546687
我们可以看到当结果分类改变,熵也发生里变化,主要是因为最后的结果发生里改变,相应的概率也发生了改变,根据公式,熵也会改变。
1.2 划分数据集
前面已经得到了如何去求信息熵的函数,但我们的划分是以哪个特征划分的呢,不知道,所以我们还要写一个以给定特征划分数据集的函数。
参考代码如下:
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
函数的三个输人参数:待划分的数据集(dataSet)、划分数据集的特征(axis)、特征的返回值(value)。输出是划分后的数据集(retDataSet)。
小知识:python语言在函数中传递的是列表的引用 ,在函数内部对列表对象的修改, 将会影响该列表对象的整个生存周期。为了消除这个不良影响 ,我们需要在函数的开始声明一个新列表对象。 因为该函数代码在同一数据集上被调用多次,为了不修改原始数据集,创建一个新的列表对象retDataSet。
这个函数也挺简单的,根据axis的值所指的对象来进行划分数据集,比如axis=0,就按照第一个特征来划分,featVec:axis就是空,下面经过一个extend函数,将featVecaxis+1:后面的数存到reduceFeatVec中,然后通过append函数以列表的形式存到retDataSet中。
这里说一下entend和append函数的功能,举个例子吧。
a=[1,2,3]
b=[4,5,6]
a.append(b)
a
1, 2, 3, 4, 5, 6
a=[1,2,3]
a.extend(b)
a
1, 2, 3, 4, 5, 6
可见append函数是直接将b的原型导入a中,extend是将b中的元素导入到a中
下面再来测试一下
myDat, labels = trees.createDataSet() #initialization
myDat
1, 1, 'yes', 1, 1, 'yes', 1, 0, 'no', 0, 1, 'no', 0, 1, 'no'
trees.splitDataSet(myDat,0,1) #choose the first character to split the dataset
1, 'yes', 1, 'yes', 0, 'no'
trees.splitDataSet(myDat,0,0)# change the value ,look the difference of previous results
1, 'no', 1, 'no'
好了,我们知道了怎样以某个特征划分数据集了,但我们需要的是最好的数据集划分方式,所以要结合前面两个函数,计算以每个特征为划分方式,相应最后的信息熵,我们要找到最大信息熵,它所对应的特征就是我们要找的最好划分方式。所以有了函数chooseBestFeatureToSpilt
参考代码如下:
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #the last column is used for the labels
baseEntropy = calcShannonEnt(dataSet) #calculate the original entropy
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures): #iterate over all the features
featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
uniqueVals = set(featList) #get a set of unique values
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy
if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature #returns an integer
这个函数就是把前面两个函数整合起来了,先算出特征的数目,由于最后一个是标签,不算特征,所以以数据集长度来求特征数时,要减1。然后求原始的信息熵,是为了跟新的信息熵,进行比较,选出变化最大所对应的特征。这里有一个双重循环,外循环是按特征标号进行循环的,下标从小到大,featList是特征标号对应下的每个样本的值,是一个列表,而uniqueVals是基于这个特征的所有可能的值的集合,内循环做的是以特征集合中的每一个元素作为划分,最后求得这个特征下的平均信息熵,然后原始的信息熵进行比较,得出信息增益,最后的if语句是要找到最大信息增益,并得到最大信息增益所对应的特征的标号。
现在来测试测试
import trees
myDat, labels = trees.createDataSet()
trees.chooseBestFeatureToSplit(myDat) #return the index of best character to split
0
1.3 递归构建决策树
好了,到现在,我们已经知道如何基于最好的属性值去划分数据集了,现在进行下一步,如何去构造决策树
决策树的实现原理 :得到原始数据集, 然后基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分。第一次划分之后, 数据将被向下传递到树分支的下一个节点, 在这个节点上 ,我们可以再次划分数据。因此我们可以采用递归的原则处理数据集。
递归结束的条件是 :程序遍历完所有划分数据集的属性, 或者每个分支下的所有实例都具有相同的分类。
这里先构造一个majorityCnt函数,它的作用是返回出现次数最多的分类名称,后面会用到
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
这个函数在实战一中的一个函数是一样的,复述一遍,classCount定义为存储字典,每当,由于后面加了1,所以每次出现键值就加1,就可以就算出键值出现的次数里。最后通过sorted函数将classCount字典分解为列表,sorted函数的第二个参数导入了运算符模块的itemgetter方法,按照第二个元素的次序(即数字)进行排序,由于此处reverse=True,是逆序,所以按照从大到小的次序排列。
让我们来测试一下
import numpy as np
classList = np.array(myDat).T[-1]
classList
array('yes', 'yes', 'no', 'no', 'no',
dtype='|S21')
majorityCnt(classList) #the number of 'no' is 3, 'yes' is 2,so return 'no'
‘no’
接下来是创建决策树函数
代码如下:
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]#stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat]) #delete the best feature , so it can find the next best feature
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree
前面两个if语句是判断分类是否结束,当所有的类都相等时,也就是属于同一类时,结束再分类,又或特征全部已经分类完成了,只剩下最后的class,也结束分类。这是判断递归结束的两个条件。一般开始的时候是不会运行这两步的,先选最好的特征,使用 chooseBestFeatureToSplit函数得到最好的特征,然后进行分类,这里创建了一个大字典myTree,它将决策树的整个架构全包含进去,这个等会在测试的时候说,然后对数据集进行划分,用splitDataSet函数,就可以得到划分后新的数据集,然后再进行createTrees函数,直到递归结束。
来测试一下
myTree = trees.createTree(myDat,labels)
myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
再来说说上面没详细说明的大字典,myTree是特征是‘no surfacing’,根据这个分类,得到两个分支‘0’和‘1‘,‘0’分支由于全是同一类就递归结束里,‘1’分支不满足递归结束条件,继续进行分类,它又会生成它自己的字典,又会分成两个分支,并且这两个分支满足递归结束的条件,所以返回‘no surfacing’上的‘1’分支是一个字典。这种嵌套的字典正是决策树算法的结果,我们可以使用它和Matplotlib来进行画决策
1.4 使用决策树执行分类
这个就是将测试合成一个函数,定义为classify函数
参考代码如下:
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
return classLabel
这个函数就是一个根据决策树来判断新的测试向量是那种类型,这也是一个递归函数,拿上面决策树的结果来说吧。
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},这是就是我们的inputTree,首先通过函数的第一句话得到它的第一个bestFeat,也就是‘no surfacing’,赋给了firstStr,secondDict就是‘no surfacing’的值,也就是 {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}},然后用index函数找到firstStr的标号,结果应该是0,根据下标,把测试向量的值赋给key,然后找到对应secondDict中的值,这里有一个isinstance函数,功能是第一个参数的类型等于后面参数的类型,则返回true,否则返回false,testVec列表第一位是1,则valueOfFeat的值是 {0: 'no', 1: 'yes'},是dict,则递归调用这个函数,再进行classify,知道不是字典,也就最后的结果了,其实就是将决策树过一遍,找到对应的labels罢了。
这里有一个小知识点,在jupyter notebook中,显示绿色的函数,可以通过下面查询它的功能,例如
isinstance? #run it , you will see a below window which is used to introduce this function
让我们来测试测试
trees.classify(myTree,labels,[1,0])
‘no’
trees.classify(myTree,labels,[1,1])
‘yes'
1.5 决策树的存储
构造决策树是很耗时的任务,即使处理很小的数据集, 如前面的样本数据, 也要花费几秒的时间 ,如果数据集很大,将会耗费很多计算时间。然而用创建好的决策树解决分类问题,可以很快完成。因此 ,为了节省计算时间,最好能够在每次执行分类时调用巳经构造好的决策树。
解决方案:使用pickle模块存储决策树
参考代码:
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()
def grabTree(filename):
import pickle
fr = open(filename)
return pickle.load(fr)
就是将决策树写到文件中,用的时候在取出来,测试一下就明白了
trees.storeTree(myTree,'classifierStorage.txt') #run it ,store the tree
trees.grabTree('classifierStorage.txt')
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
决策树的构造部分结束了,下面介绍怎样绘制决策树
2. 使用Matplotlib注解绘制树形图
前面我们看到决策树最后输出是一个大字典,非常丑陋,我们想让它更有层次感,更加清晰,最好是图形状的,于是,我们要Matplotlib去画决策树。
2.1 Matplotlib注解
Matplotlib提供了一个注解工具annotations,它可以在数据图形上添加文本注释。
创建一个treePlotter.py文件来存储画图的相关函数.
首先是使用文本注解绘制树节点,参考代码如下:
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',\
xytext=centerPt, textcoords='axes fraction',\
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
def createPlot1():
fig = plt.figure(1, facecolor='white')
fig.clf()
createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses
plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
plt.show()
前面三行是定义文本框和箭头格式,decisionNode是锯齿形方框,文本框的大小是0.8,leafNode是4边环绕型,跟矩形类似,大小也是4,arrow_args是指箭头,我们在后面结果是会看到这些东西,这些数据以字典类型存储。第一个plotNode函数的功能是绘制带箭头的注解,输入参数分别是文本框的内容,文本框的中心坐标,父结点坐标和文本框的类型,这些都是通过一个createPlot.ax1.annotate函数实现的,create.ax1是一个全局变量,这个函数不多将,会用就行了。第二个函数createPlot就是生出图形,也没什么东西,函数第一行是生成图像的画框,横纵坐标最大值都是1,颜色是白色,下一个是清屏,下一个就是分图,111中第一个1是行数,第二个是列数,第三个是第几个图,这里就一个图,跟matlab中的一样,matplotlib里面的函数都是和matlab差不多。
来测试一下吧
reset -f #clear all the module and data
cd 桌面/machinelearninginaction/Ch03
/home/fangyang/桌面/machinelearninginaction/Ch03
import treePlotter
import matplotlib.pyplot as plt
treePlotter.createPlot1()
2.2 构造注解树
绘制一棵完整的树需要一些技巧。我们虽然有 x 、y 坐标,但是如何放置所有的树节点却是个问题,我们必须知道有多少个叶节点,以便可以正确确定x轴的长度;我们还需要知道树有多少层,以便可以正确确定y轴的高度。这里定义了两个新函数getNumLeafs()和getTreeDepth(),以求叶节点的数目和树的层数。
参考代码:
def getNumLeafs(myTree):
numLeafs = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
numLeafs += getNumLeafs(secondDict[key])
else: numLeafs +=1
return numLeafs
def getTreeDepth(myTree):
maxDepth = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
thisDepth = 1 + getTreeDepth(secondDict[key])
else: thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth
我们可以看到两个方法有点似曾相识,没错,我们在进行决策树分类测试时,用的跟这个几乎一样,分类测试中的isinstance函数换了一种方式去判断,递归依然在,不过是每递归依次,高度增加1,叶子数同样是检测是否为字典,不是字典则增加相应的分支。
这里还写了一个函数retrieveTree,它的作用是预先存储的树信息,避免了每次测试代码时都要从数据中创建树的麻烦
参考代码如下
def retrieveTree(i):
listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
return listOfTrees[i]
这个没什么好说的,就是把决策树的结果存在一个函数中,方便调用,跟前面的存储决策树差不多。
有了前面这些基础后,我们就可以来画树了。
参考代码如下:
def plotMidText(cntrPt, parentPt, txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
numLeafs = getNumLeafs(myTree) #this determines the x width of this tree
depth = getTreeDepth(myTree)
firstStr = myTree.keys()[0] #the text label for this node should be this
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
plotMidText(cntrPt, parentPt, nodeTxt)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
plotTree(secondDict[key],cntrPt,str(key)) #recursion
else: #it's a leaf node print the leaf node
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict
def createPlot(inTree):
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
plotTree(inTree, (0.5,1.0), '')
plt.show()
第一个函数是在父子节点中填充文本信息,函数中是将父子节点的横纵坐标相加除以2,上面写得有一点点不一样,但原理是一样的,然后还是在这个中间坐标的基础上添加文本,还是用的是 createPlot.ax1这个全局变量,使用它的成员函数text来添加文本,里面是它的一些参数。
第二个函数是关键,它调用前面我们说过的函数,用树的宽度用于计算放置判断节点的位置 ,主要的计算原则是将它放在所有叶子节点的中间,而不仅仅是它子节点的中间,根据高度就可以平分坐标系了,用坐标系的最大值除以高度,就是每层的高度。这个plotTree函数也是个递归函数,每次都是调用,画出一层,知道所有的分支都不是字典后,才算画完。每次检测出是叶子,就记录下它的坐标,并写出叶子的信息和父子节点间的信息。plotTree.xOff和plotTree.yOff是用来追踪已经绘制的节点位置,以及放置下一个节点的恰当位置。
第三个函数我们之前介绍介绍过一个类似,这个函数调用了plotTree函数,最后输出树状图,这里只说两点,一点是全局变量plotTree.totalW存储树的宽度 ,全 局变量plotTree.totalD存储树的深度,还有一点是plotTree.xOff和plotTree.yOff是在这个函数这里初始化的。
最后我们来测试一下
cd 桌面/machinelearninginaction/Ch03
/home/fangyang/桌面/machinelearninginaction/Ch03
import treePlotter
myTree = treePlotter.retrieveTree(0)
treePlotter.createPlot(myTree)
改变标签,重新绘制图形
myTree['no surfacing'][3] = 'maybe'
treePlotter.createPlot(myTree)
至此,用matplotlib画决策树到此结束。
3 使用决策树预测眼睛类型
隐形眼镜数据集是非常著名的数据集 , 它包含很多患者眼部状况的观察条件以及医生推荐的隐形眼镜类型 。隐形眼镜类型包括硬材质 、软材质以及不适合佩戴 隐形眼镜 。数据来源于UCI数据库 ,为了更容易显示数据 , 将数据存储在源代码下载路径的文本文件中。
进行测试
import trees