添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

摘要:

生境破碎化对生物多样性的影响是当前生态学和保护生物学的重要研究内容之一。然而, 生境破碎化对物种多样性和活动节律影响的研究仍然不足。本研究于2018年7月至2021年7月在四川都江堰地区利用红外相机监测技术对21个破碎化森林斑块中的兽类、鸟类多样性进行调查, 以期了解破碎化森林中野生动物资源状况, 以及探明斑块大小、演替阶段对鸟兽多样性和优势种活动节律的影响。本研究鉴定出野生兽类和鸟类共63种, 隶属10目25科, 其中兽类11种, 鸟类52种。国家二级重点保护野生动物有藏酋猴( Macaca thibetana )、豹猫( Prionailurus bengalensis )、红腹锦鸡( Chrysolophus pictus )、红腹角雉( Tragopan temminckii )等12种, 中国特有动物有藏酋猴、小麂( Muntiacus reevesi )、灰胸竹鸡( Bambusicola thoracicus )等7种。被IUCN濒危物种红色名录评估为易危(VU)的物种仅猪獾( Arctonyx collaris ) 1种, 近危(NT)的有藏酋猴和毛冠鹿( Elaphodus cephalophus ) 2种。兽类的物种数和相对多度随斑块大小增加而增加, 鸟类的物种数和相对多度与斑块大小之间没有显著相关性; 兽类、鸟类的物种数和相对多度与森林演替阶段之间没有显著相关性。鸟类的物种数和相对多度在旱季显著高于雨季, 兽类的相对多度在雨季明显高于旱季, 而兽类的物种数在旱季和雨季间没有显著差异。优势物种红腹锦鸡和灰胸竹鸡的日活动节律曲线高度重叠且无显著分化; 两种鸡形目物种的日活动节律重叠度随斑块大小的增大而增加, 随森林演替进行而降低, 与人为活动干扰在时间维度上存在明显的规避现象。结果表明, 生境破碎化主要影响兽类的物种多样性和优势鸟类的日活动节律。因此, 应加强运用红外相机等新技术对非保护区、非国家公园等破碎化生境内野生动物多样性的监测、研究和保护。该结果对进一步研究生境破碎化对生物多样性的影响及物种共存也具有一定的参考价值。

生态位分化

Abstract

Aims: The impacts of habitat fragmentation on biodiversity are a critical research area in ecology and conservation biology. However, there is still insufficient understanding of how habitat fragmentation affects species diversity and activity rhythm. The purpose of this study is to investigate the diversity of birds and animals in fragmented forests and to explore the effects of patch size and stand age on the diversity of mammals and birds, as well as the daily activity rhythm of dominant species.

Methods: From July 2018 to July 2021, researchers used infrared cameras to survey mammal and bird species in 21 fragmented forest patches located in the Dujiangyan region of Sichuan Province. The “vegan” package in R was used to generate the species accumulation curve; the linear mixed model of the “lme4” package in R was used to analyze the relationship between species richness and relative abundance index, and factors such as patch sizes, stand ages, and seasonal variations; the “overlap” package and “activity” package in R were used to analyze the daily activity rhythm and niche overlap of two dominant species and anthropogenic activities, through kernel density estimation and coefficient of overlap analyses.

Results: This study documented a total of 63 species of wild animals, which belonged to 10 orders and 25 families. These species included 52 species of birds and 11 species of mammals. Notably, 12 of the recorded species are Class-II national protected animals, such as Macaca thibetana , Prionailurus bengalensis , Chrysolophus pictus , and Tragopan temminckii ; 7 species are endemic to China, including M. thibetana , Muntiacus reevesi , and Bambusicola thoracicus ; 1 species ( Arctonyx collaris ) is red listed by the IUCN as Vulnerable (VU), and two species ( M. thibetana and Elaphodus cephalophus ) are listed as Near Threatened (NT). The research found that the species richness and relative abundance index of mammals increased as patch sizes increased. However, there was no significant correlation between bird species richness and relative abundance index, and patch sizes. Stand ages did not have significant correlations with the relative abundance index of mammals and birds. Furthermore, the study showed that the bird species richness and relative abundance index were significantly higher in the dry season than in the wet season. In contrast, the relative abundance index of mammals was significantly lower in the dry season than in the wet season, while mammal species richness did not significantly differ between the dry and wet season. The daily activity rhythm curves of the two dominant species (i.e., C. pictus and B. thoracicus ) were highly overlapping and showed no significant niche differentiation; the overlap of daily activity rhythm increased as patch size but decreased with stand ages. In addition, the diurnal activity of the two dominant bird species showed a noticeable avoidance of anthropogenic activities during certain times.

Conclusion: Our findings indicate that forest fragmentation mainly affects mammal diversity and the daily activity rhythm of dominant birds. Therefore, it is crucial to enhance the use of new technologies such as infrared cameras to monitor, study and protect the diversity of wildlife in areas outside protected zones and national parks. Our results provide valuable insights for further studies on the impact of habitat fragmentation on biodiversity and species coexistence.

Key words: biodiversity, camera trapping, habitat fragmentation, forest succession, daily activity rhythm, niche differentiation

赵坤明, 陈圣宾, 杨锡福 (2023) 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律. 生物多样性, 31, 22529. DOI: 10.17520/biods.2022529 .

Kunming Zhao, Shengbin Chen, Xifu Yang (2023) Investigation of the diversity of mammals and birds and the activity rhythm of dominant species using camera trapping in a fragmented forest in the Dujiangyan region, Sichuan Province. Biodiversity Science, 31, 22529. DOI: 10.17520/biods.2022529 .

图2 斑块大小(A, C)和演替阶段(B, D)对鸟兽物种数和相对多度指数的影响。* P < 0.05, ** P < 0.01; ns: 没有显著性差异。箱线图中, 箱体中间的横线表示中位数; 箱体高度表示25%-75%百分位数, 有50%的数据在此范围内; 箱体外的两条竖线表示除去异常值外的最大值和最小值; 线外的小圈表示异常值。图A和B中, N表示样本大小(即斑块数)。 Fig. 2 Effects of patch size (A, C) and stand age (B, D) on species richness and relative abundance indices of birds and mammals. *, ** indicate P < 0.05, 0.01, respectively, and ns indicates a non-significant effect (P > 0.05). The bottom and top limits of each box are the lower and upper quartiles, respectively; the horizontal line within each middle of box is the median. The two vertical lines outside the box represent the maximum and minimum values except for the outliers; the small circles outside the line represent the outliers. N in (A, B) indicated the sample size (i.e., patches).

图2 斑块大小(A, C)和演替阶段(B, D)对鸟兽物种数和相对多度指数的影响。* P < 0.05, ** P < 0.01; ns: 没有显著性差异。箱线图中, 箱体中间的横线表示中位数; 箱体高度表示25%-75%百分位数, 有50%的数据在此范围内; 箱体外的两条竖线表示除去异常值外的最大值和最小值; 线外的小圈表示异常值。图A和B中, N表示样本大小(即斑块数)。

Fig. 2 Effects of patch size (A, C) and stand age (B, D) on species richness and relative abundance indices of birds and mammals. *, ** indicate P < 0.05, 0.01, respectively, and ns indicates a non-significant effect (P > 0.05). The bottom and top limits of each box are the lower and upper quartiles, respectively; the horizontal line within each middle of box is the median. The two vertical lines outside the box represent the maximum and minimum values except for the outliers; the small circles outside the line represent the outliers. N in (A, B) indicated the sample size (i.e., patches).

图3 季节(旱季、雨季)对鸟类、兽类物种数(A)和相对多度指数(B)的影响(平均值 ± 标准误)。图中*, ***分别表示P < 0.05, 0.001; ns表示没有显著性差异。 Fig. 3 Effects of seasons (dry season and wet season) on species richness (A) and relative abundance index (B) of birds and mammals (mean ± SE). *, *** indicate P < 0.05, 0.001, respectively, and ns indicates a non-significant effect (P > 0.05).

图3 季节(旱季、雨季)对鸟类、兽类物种数(A)和相对多度指数(B)的影响(平均值 ± 标准误)。图中*, ***分别表示P < 0.05, 0.001; ns表示没有显著性差异。

Fig. 3 Effects of seasons (dry season and wet season) on species richness (A) and relative abundance index (B) of birds and mammals (mean ± SE). *, *** indicate P < 0.05, 0.001, respectively, and ns indicates a non-significant effect (P > 0.05).

Berzaghi F, Verbeeck H, Nielsen MR, Doughty CE, Bretagnolle F, Marchetti M, Scarascia-Mugnozza G (2018) Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles—The potential of vegetation models. Ecography, 41, 1934-1954. Bu HL, Wang F, McShea WJ, Lu Z, Wang DJ, Li S (2016) Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of Southwest China. PLoS ONE, 11, e0164271. Chang JC, Lu CH, Liu BW, Xu Q (1997) Study of the birds community structure in different succession period of Korean pine forest. Chinese Journal of Ecology, 16(6), 1-5. (in Chinese with English abstract) Chazdon RL (2008) Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320, 1458-1460. Chen CD (2000) The Dujiangyan Region—Pivot sector of assemblage, differentiation and maintenance of biodiversity in northern part of Hengduan Mountain. Acta Ecologica Sinica, 20, 28-34. (in Chinese with English abstract) Chen LJ, Shu ZF, Xiao ZS (2019) Application of camera-trapping data to study daily activity patterns of Galliformes in Guangdong Chebaling National Nature Reserve. Biodiversity Science, 27, 266-272. (in Chinese with English abstract) Davies TJ, Buckley LB, Grenyer R, Gittleman JL (2011) The influence of past and present climate on the biogeography of modern mammal diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2526-2535. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science, 345, 401-406. Evens R, Kowalczyk C, Norevik G, Ulenaers E, Davaasuren B, Bayargur S, Artois T, Åkesson S, Hedenström A, Liechti F, Valcu M, Kempenaers B (2020) Lunar synchronization of daily activity patterns in a crepuscular avian insectivore. Ecology and Evolution, 10, 7106-7116. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515. Fahrig L (2013) Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40, 1649-1663. Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics, 48, 1-23. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052. Hardin G (1960) The competitive exclusion principle. Science, 131, 1292-1297. Hu L, Xie WH, Shang T, Jiang BK, Xiao ZS (2016) Preliminary survey for mammal and bird diversity using camera traps in the Longxi-Hongkou National Nature Reserve of Sichuan Province, Southwest China. Acta Theriologica Sinica, 36, 330-337. (in Chinese with English abstract) Hu YF, Li BQ, Liang D, Li XQ, Liu LX, Yang JW, Luo X (2022) Effect of anthropogenic disturbance on lady Amherst’s pheasant ( Chrysolophus amherstiae ) activity. Biodiversity Science, 30, 21484. (in Chinese with English abstract) Jia GQ, Yang X, Li YD, Wang Y, Zheng XA, Jiang Y, Yang B, Li SQ (2022) Comparison study on activity rhythms of sambar ( Cervus equinus ) and tufted deer ( Elaphodus cephalophus ) in the same region based on infrared camera data. Journal of Sichuan Forestry Science and Technology, 43(2), 38-46. (in Chinese with English abstract) Jia XD, Liu XH, Yang XZ, Wu PF, Songer M, Cai Q, He XB, Zhu Y (2014) Seasonal activity patterns of ungulates in Qinling Mountains based on camera-trap data. Biodiversity Science, 22, 737-745. (in Chinese with English abstract) [贾晓东, 刘雪华, 杨兴中, 武鹏峰, Melissa Songer, 蔡琼, 何祥博, 朱云 (2014) 利用红外相机技术分析秦岭有蹄类动物活动节律的季节性差异. 生物多样性, 22, 737-745.] Jiang MM, Cao L, Xiao ZS, Guo C (2010) Frugivorous birds and its impacts on seed dispersal of wild cherry ( Prunus pseudocerasus ) in a Dujiangyan forest, China. Chinese Journal of Zoology, 45(1), 27-34. (in Chinese with English abstract) Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversity Science, 24, 501-551. (in Chinese and in English) Jiang ZG, Liu SY, Wu Y, Jiang XL, Zhou KY (2017) China’s mammal diversity (2nd edition). Biodiversity Science, 25, 886-895. (in Chinese with English abstract) Kay SL, Fischer JW, Monaghan AJ, Beasley JC, Boughton R, Campbell TA, Cooper SM, Ditchkoff SS, Hartley SB, Kilgo JC, Wisely SM, Wyckoff AC, VerCauteren KC, Pepin KM (2017) Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Movement Ecology, 5, 14. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26. Li HD, Tang LF, Jia CX, Holyoak M, Fründ J, Huang XQ, Xiao ZS (2020) The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks. Ecology Letters, 23, 1252-1262. Li S, Wang DJ, Bu HL, Liu XG, Jin T (2016) Camera-trapping survey on the mammal diversity in the Laohegou Nature Reserve, Sichuan Province. Acta Theriologica Sinica, 36, 282-291. (in Chinese with English abstract) Li S, Wang DJ, Xiao ZS, Li XH, Wang TM, Feng LM, Wang Y (2014) Camera-trapping in wildlife research and conservation in China: Review and outlook. Biodiversity Science, 22, 685-695. (in Chinese with English abstract) Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology, 284, 224-229. Liu JJ, Coomes DA, Gibson L, Hu G, Liu JL, Luo YQ, Wu CP, Yu MJ (2019) Forest fragmentation in China and its effect on biodiversity. Biological Reviews, 94, 1636-1657. Liu MX, Zhu BQ, Wang YJ, Zeren ZM, Fang C, Jin GX, Leng ZC, Guan TP, Sun ZY (2021) Activity rhythm and seasonal changes of Elaphodus cephalophus in Baihe National Nature Reserve, Sichuan Province. Journal of Sichuan Forestry Science and Technology, 42(2), 27-32. (in Chinese with English abstract) MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373-387. MacKinnon J, Phillipps K, He FQ (2000) A Field Guide to the Birds of China. Hunan Education Publishing House, Changsha. (in Chinese) Miller-Rushing AJ, Primack RB, Devictor V, Corlett RT, Cumming GS, Loyola R, Maas B, Pejchar L (2019) How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. Biological Conservation, 232, 271-273. Nouvellet P, Rasmussen GSA, Macdonald DW, Courchamp F (2012) Noisy clocks and silent sunrises: Measurement methods of daily activity pattern. Journal of Zoology, 286, 179-184. O’Brien TG, Baillie JEM, Krueger L, Cuke M (2010) The Wildlife Picture Index: Monitoring top trophic levels. Animal Conservation, 13, 335-343. O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 6, 131-139. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, Caceres MD, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill GO, Lahti L, Glinn DM, Ouellette MH, Cunha ER, Smith T, Stier A, Braak CJFT, Weedon J (2022) vegan: Community Ecology Package. R package version 2.6-2. https://cran.r-project.org/package=vegan. (accessed on 2022-04-07) R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2022-04-07) Rafferty NE, Diez JM, Bertelsen CD (2020) Changing climate drives divergent and nonlinear shifts in flowering phenology across elevations. Current Biology, 30, 432-441. Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322-337. Riva F, Fahrig L (2022) Small patches are disproportionately important for biodiversity conservation, despite ecosystem decay. Research Square. https://doi.org/10.21203/rs.3.rs-1797451/v1. (accessed on 2022-09-07) Rowcliffe JM, Carbone C (2008) Surveys using camera traps: Are we looking to a brighter future? Animal Conservation, 11, 185-186. Rowcliffe JM (2016) Activity: Animal Activity Statistics. https://cran.r-project.org/package=activity. (accessed on 2022-05-07) Schmid F, Schmidt R (2007) Multivariate extensions of Spearman’s rho and related statistics. Statistics & Probability Letters, 77, 407-416. Schoener TW (1974) Resource partitioning in ecological communities. Science, 185, 27-39. Shi JY, Yang H, Hua JQ, Zhao YZ, Li JQ, Xu JL (2020) The relationship between the diurnal activity rhythm of Reeves’s pheasant ( Syrmaticus reevesii ) and human disturbance revealed by camera trapping. Biodiversity Science, 28, 796-805. (in Chinese with English abstract) Timo TP, Lyra-Jorge MC, Gheler-Costa C, Verdade LM (2015) Effect of the plantation age on the use of Eucalyptus stands by medium to large-sized wild mammals in south-eastern Brazil. iForest - Biogeosciences and Forestry, 8, 108-113. Xiao ZS, Li XH, Jiang GS (2014a) Applications of camera trapping to wildlife surveys in China. Biodiversity Science, 22, 683-684. (in Chinese) Xiao ZS, Xiao WH, Wang TM, Li S, Lian XM, Song DZ, Deng XQ, Zhou QH (2022) Wildlife monitoring and research using camera-trapping technology across China: The Current status and future issues. Biodiversity Science, 30, 22451. (in Chinese with English abstract) Xie WH, Yang XF, Yu JJ, Li JN, Tao SL, Lu ZJ, Wang XZ, Xiao ZS (2014) A survey of mammals and birds using camera traps in Badagongshan Forest Dynamics Plot, Central China. Biodiversity Science, 22, 816-818. (in Chinese) [谢文华, 杨锡福, 于家捷, 李俊年, 陶双伦, 卢志军, 王学志, 肖治术 (2014) 运用红外相机对八大公山森林动态样地鸟兽的初步调查. 生物多样性, 22, 816-818.] Yang XF, Gu HF, Zhao QJ, Zhu YL, Teng YW, Li Y, Zhang ZB (2022a) High seed diversity and availability increase rodent community stability under human disturbance and climate variation. Frontiers in Plant Science, 13, 1068795. Yang XF, Han LL, Wang Y, Guo C, Zhang ZB (2022b) Revealing the real-time diversity and abundance of small mammals by using an Intelligent Animal Monitoring System (IAMS). Integrative Zoology, 17, 1121-1135. Yang XF, Yan C, Zhao QJ, Holyoak M, Fortuna MA, Bascompte J, Jansen PA, Zhang ZB (2018) Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests. Forest Ecology and Management, 419/420, 42-50. Yao HY, Wang PC, Davison G, Wang Y, McGowan PJK, Wang N, Xu JL (2021) How do snow partridge ( Lerwa lerwa ) and Tibetan snowcock ( Tetraogallus tibetanus ) coexist in sympatry under high-elevation conditions on the Qinghai-Tibetan Plateau? Ecology and Evolution, 11, 18331-18341. Yu JP, Wang JY, Xiao HY, Chen XN, Chen SW, Li S, Shen XL (2019) Camera-trapping survey of mammalian and avian biodiversity in Qianjiangyuan National Park, Zhejiang Province. Biodiversity Science, 27, 1339-1344. (in Chinese with English abstract) [余建平, 王江月, 肖惠芸, 陈小南, 陈声文, 李晟, 申小莉 (2019) 利用红外相机公里网格调查钱江源国家公园的兽类及鸟类多样性. 生物多样性, 27, 1339-1344.] Zhang QW, Gong YN, Song XJ, Wang XC, Yang CT, Shu ZF, Zou FS (2018) Comparing the effectiveness of camera trapping to traditional methods for biodiversity surveys of forest birds. Biodiversity Science, 26, 229-237. (in Chinese with English abstract) [张倩雯, 龚粤宁, 宋相金, 王新财, 杨昌腾, 束祖飞, 邹发生 (2018) 红外相机技术与其他几种森林鸟类多样性调查方法的比较. 生物多样性, 26, 229-237.] Zhang SMY, He XC, Wang Y, Wang BY, He QY, Zhang YT, Wang B, Zhang K, Hu L, Shang T, Zhu M, Wu YJ (2022) Diversity of birds in breeding season of Dujiangyan. Biodiversity Science, 30, 21329. (in Chinese with English abstract) [张尚明玉, 何兴成, 王燕, 王贝爻, 何倩芸, 张怡田, 王彬, 张凯, 胡力, 尚涛, 朱敏, 吴永杰 (2022) 都江堰地区繁殖期鸟类多样性. 生物多样性, 30, 21329.] Zhang ZB (2019) Studies on the Rodent-Seed Interactions of Forest Ecosystems:Exploring the Secrets of Cooperation Between Antagonists. Science Press, Beijing. (in Chinese) Zhang ZW, Ding CQ, Ding P, Zheng GM (2003) The current status and a conservation strategy for species of Galliformes in China. Biodiversity Science, 11, 414-421. (in Chinese with English abstract) Zhao QJ, Gu HF, Yan C, Cao K, Zhang ZB (2016) Impact of forest fragmentation on rodent-seed network. Acta Theriologica Sinica, 36, 15-23. (in Chinese with English abstract) Zheng JF, Tang R, He S, Chen YH, Wu S, Zhang K, Xu Y, Zou X (2021) Bird diversity and nestedness on fragmented woodlots in Huaxi University Town, Guizhou Province. Biodiversity Science, 29, 661-667. (in Chinese with English abstract) Zhou TX, Yang HL, Zhang GQ, Yang J, Feng X, Hu Q, Cheng YH, Zhang JD, Wang B, Zhou CQ (2022) Temporal and spatial niche differentiation among three alpine Galliformes with sympatric distribution in the Wolong National Nature Reserve, Sichuan Province. Biodiversity Science, 30, 22026. (in Chinese with English abstract) [周天祥, 杨华林, 张贵权, 杨建, 冯茜, 胡强, 程跃红, 张晋东, 王彬, 周材权 (2022) 四川卧龙国家级自然保护区三种高山同域鸡形目鸟类的时空生态位比较. 生物多样性, 30, 22026.] 邢超 林依 周智强 赵联军 蒋仕伟 林蓁蓁 徐基良 詹祥江. 基于DNA条形码技术构建王朗国家级自然保护区陆生脊椎动物遗传资源数据库及物种鉴定 [J]. 生物多样性, 2023, 31(7): 22661-. 苏荣菲 陈睿山 郭晓娜. 城市社区更新中生物多样性的保护策略: 以上海市长宁区生境花园为例 [J]. 生物多样性, 2023, 31(7): 23118-. 申昊 佟一杰 赵淑哲 韩永金 史晓旭 滕备 王新谱 白明. 香港马鞍山三种被动采集方法的甲虫物种多样性数据集 [J]. 生物多样性, 2023, 31(7): 23021-. 冯莉. 国际法视野下生物多样性和气候变化协同治理 [J]. 生物多样性, 2023, 31(7): 23110-. 李发扬 李滢钰 蒋文妮 刘曙光 霍超 孙巧奇 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性 [J]. 生物多样性, 2023, 31(7): 22665-. 陈声文 任海保 童光蓉 王宁宁 蓝文超 薛建华 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局 [J]. 生物多样性, 2023, 31(7): 22587-. 杨俊毅 关潇 李俊生 刘晶晶 郝颢晶 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系 [J]. 生物多样性, 2023, 31(7): 23061-. 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响 [J]. 生物多样性, 2023, 31(6): 22518-. 王文婷, 王蓉, 牛翠平, 白杨, 杨效东. 西双版纳农林复合橡胶林土壤多营养级生物网络结构 [J]. 生物多样性, 2023, 31(6): 22626-. 韦毅刚, 温放, 辛子兵, 符龙飞. 广西野生维管植物名录 [J]. 生物多样性, 2023, 31(6): 23078-. 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展 [J]. 生物多样性, 2023, 31(6): 22636-. 李苗, 要晨阳, 陈小勇. 环境RNA技术在水生生物监测中的应用 [J]. 生物多样性, 2023, 31(5): 23062-. 段曼微, 李香, 周阳, 赵敏欣, 孙秀玲, 韩冰, 张刚, 权子豪, 李凯. 基于蛾类多样性研究人工林斑块的边缘效应 [J]. 生物多样性, 2023, 31(5): 23074-. 徐靖, 王金洲. 《昆明-蒙特利尔全球生物多样性框架》主要内容及其影响 [J]. 生物多样性, 2023, 31(4): 23020-. 章嫡妮, 王蕾, 卢晓强, 王长永, 刘燕. 《生物多样性公约》及其议定书下“能力建设与发展”议题的磋商、挑战及政策建议 [J]. 生物多样性, 2023, 31(4): 22588-.