1 UDP协议
UDP是面向无连接的协议,
使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号,就可以直接发数据包
。但是,能不能到达就不知道了。虽然用UDP传输数据不可靠,但它的优点是和TCP比,速度快,对于不要求可靠到达的数据,就可以使用UDP协议。
2 UDP通信流程
我们先来了解一下,python的socket的通讯流程:
创建Socket对象
绑定IP地址Address和端口Port,使用bind方法,IPv4地址为一个二元组('IP',Port),
一个UDP端口只能被绑定一次
接受数据,recvfrom方法,使用缓冲区接受数据
发送数据,sendto方法,类型为bytes
创建Socket对象
连接服务端。connect方法(可选)
发送数据,sendto/send方法,类型为bytes
接受数据,recvfrom/recv方法,使用缓冲区接受数据
我们可以看到UDP不需要维护一个连接,所以比较简单
3 UDP编程
使用udp编程和使用tcp编程用于相似的步骤,而因为udp的特性,它的服务端不需要监听端口,并且客户端也不需要事先连接服务端。根据上图,以及建立服务端的流程,我门来捋一下服务端的逻辑到代码的步骤:
3.1 构建服务端
创建服务端
socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
# socke.AF_INET 指的是使用 IPv4
# socket.SOCK_STREAM 指定使用面向数据报的UDP协议
绑定IP地址和端口。
socket.bind(('127.0.0.1',999))
# 小于1024的端口只有管理员才可以指定
接受数据(阻塞)
data, client_info = sock.recvfrom(1024)
# 返回一个元组,数据和客户端的地址,因为UDP没有连接,所以只能通过提取消息的发送的源地址,才能在应答时指定对方地址
sock.sendto('data'.encode(),('127.0.0.1',999)) # bytes格式
# 第二个参数为客户端地址
sock.close()
完成的代码:
import socket
server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 指定socket的协议,UDP使用的是SOCK_DGRAM
server.bind(('127.0.0.1', 9999)) # 绑定端口
print('UDP Server is Starting...')
data, addr = server.recvfrom(1024) # 接受(包含数据以及客户端的地址)
print('Received from {}'.format(addr))
server.sendto('hello,{}'.format(addr).encode('utf-8'), addr) # 应答,格式为(应答的数据,客户端的IP和Port元组)
为什么要使用recvfrom/sendto?
UDP无连接的特性,当服务端收到一条消息时,不会为它维护一个socket的,那么如何应答呢?
UDP报文中包含对方的IP和Port信息,使用recvfrom,就会返回对方发送的数据和对方的地址
sendto由于没有socket的特性,所以应答时也需要传递client的地址和端口
3.2 构建客户端
创建客户端
socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
# socke.AF_INET 指的是使用 IPv4
# socket.SOCK_STREAM 指定使用面向数据报的UDP协议
添加服务端地址信息(可选)。
socket.connect(('127.0.0.1',999))
# UDP不会创建连接,所以这里仅仅是在socket上添加了本段/对端的地址而已,并不会发起连接
接受数据(阻塞)
data, client_info = sock.recv(1024)
# 返回一个元组,数据和客户端的地址,因为UDP没有连接,所以只能通过提取消息的发送的源地址,才能在应答时指定对方地址
sock.sendto('data'.encode(),('127.0.0.1',999)) # bytes格式
# 第二个参数为客户端地址
sock.close()
为什么connect是可选的?
当执行connect时,由于UDP的特性,并不会为我们创建连接,这里仅仅是在socket上添加了对端的地址而已,并不会发起连接
import socket
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
print(client) # <socket.socket fd=140, family=AddressFamily.AF_INET, type=SocketKind.SOCK_DGRAM, proto=0>
client.connect(('127.0.0.1', 9999))
print(client) # <socket.socket fd=140, family=AddressFamily.AF_INET, type=SocketKind.SOCK_DGRAM, proto=0, laddr=('127.0.0.1', 51859), raddr=('127.0.0.1', 9999)>
如果不执行connect,那么在使用send发生时,就无法知道对端的IP地址,那么只能使用sendto来指定了。
为什么接收时使用recv,因为是client,只会有server应答消息,所以就不需要来区分了。
如果指定了connect,sendto已久可以发给任意终端,但recv只能接受connect指定的对端,发来的消息。
完整的代码:
import socket
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # 指定socket的协议,UDP使用的是SOCK_DGRAM
client.sendto('hello world'.encode('utf-8'), ('127.0.0.1', 9999)) # 发送数据,格式为(发送的数据,服务端的IP和Port元组)
print(client.recv(1024).decode('utf-8')) # 同样使用recv来接受服务端的应答数据
UDP的使用与TCP类似,但是不需要建立连接。此外,服务器绑定UDP端口和TCP端口互不冲突,也就是说,UDP的9999端口与TCP的9999端口可以各自绑定。
3.3 常用方法
服务器端套接字:
s.setblocking(flag)
如果flag为0,则将套接字设为非阻塞模式,否则将套接字设为阻塞模式(默认值)。非阻塞模式下,如果调用recv()没有发现任何数据,或send()调用无法立即发送数据,那么将引起socket.error异常。
s.makefile()
创建一个与该套接字相关连的文件
4 聊天室
下面来模仿上一篇TCP版本的聊天室的结构来创建一个UDP版本的聊天室
import socket
import threading
import datetime
import logging
FORMAT = '%(asctime)s %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
class ChatUDPServer:
def __init__(self, ip, port):
self.ip = ip
self.port = port
self.event = threading.Event()
self.clients = {}
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
def start(self):
self.sock.bind((self.ip, self.port))
threading.Thread(target=self.recv, name='start').start()
def recv(self):
while not self.event.is_set():
# 待清理的列表
clean = set()
# 远程主机关闭连接时,这里会触发异常。不知道为啥
data, client_addr = self.sock.recvfrom(1024)
except ConnectionResetError:
continue
if data.upper() == 'quit' or data == b'':
self.clients.pop(client_addr)
logging.info(client_addr, 'is down')
continue
# 心跳包,内容越小越好
if data.lower() == b'@im@':
self.clients[client_addr] = datetime.datetime.now().timestamp()
continue
logging.info('{}:{} {}'.format(*client_addr, data.decode()))
self.clients[client_addr] = datetime.datetime.now().timestamp()
msg = "{}:{} {}".format(*client_addr, data.decode()).encode()
current = datetime.datetime.now().timestamp()
for client, date in self.clients.items():
# 如果10s内没有发送心跳包,则进行清理
if current - date > 10:
clean.add(client)
else:
self.sock.sendto(msg, client)
# 清理超时连接
for client in clean:
self.clients.pop(client)
def stop(self):
self.event.set()
self.sock.close()
if __name__ == '__main__':
cus = ChatUDPServer('127.0.0.1', 9999)
cus.start()
while True:
cmd = input('>>>>: ').strip()
if cmd.lower() == 'quit':
cus.stop()
break
else:
print(threading.enumerate())
import socket
import threading
import logging
FORMAT = '%(asctime)s %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
class ChatUDPClient:
self.ip: 服务端地址
self.port:服务端端口
self.socket:创建一个socket对象,用于socket通信
self.event:创建一个事件对象,用于控制链接循环
def __init__(self, ip, port):
self.ip = ip
self.port = port
self.socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
self.event = threading.Event()
def connect(self):
self.socket.connect((self.ip, self.port))
threading.Thread(target=self.recv, name='recv',daemon=True).start()
threading.Thread(target=self._heart,name='heart',daemon=True).start()
def _heart(self):
while not self.event.wait(5):
data = '@im@'
self.send(data)
def recv(self):
while not self.event.is_set():
# 某些服务端强制关闭时,会出b'',这里进行判断
data = self.socket.recv(1024)
if data == b'':
self.event.set()
logging.info('{}:{} is down'.format(self.ip, self.port))
break
logging.info(data.decode())
# 有些服务端在关闭时不会触发b'',这里会直接提示异常,这里进行捕捉
except (ConnectionResetError,OSError):
self.event.set()
logging.info('{}:{} is down'.format(self.ip, self.port))
def send(self, msg):
self.socket.send(msg.encode())
def stop(self):
self.send('quit')
self.socket.close()
if __name__ == '__main__':
ctc = ChatUDPClient('127.0.0.1', 9999)
ctc.connect()
while True:
info = input('>>>>:').strip()
if not info: continue
if info.lower() == 'quit':
logging.info('bye bye')
ctc.stop()
break
if not ctc.event.is_set():
ctc.send(info)
else:
logging.info('Server is down...')
break
5 UDP协议应用
UDP是无连接协议,它基于以下假设:
网络足够好
消息不会丢包
包不会乱序
但是,即使在局域网,也不能保证不丢包,而且包的到达不一定有序。
应用场景:
视频音频传输,一般来说,丢些包,问题不大,最多丢些图像,听不清话语。
海量采集数据,例如传感器发来的数据,丢几十、几百条数据也没有关系。
DNS协议,数据内容小,一个包就能查到结果,不存在乱序,丢包时重新请求解析即可。
一般来说,UDP性能优于TCP,但是可靠性要求高的场合还是要选择TCP协议。
所有巧合的是要么是上天注定要么是一个人偷偷的在努力。