添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

CVPR'23 最新 99 篇论文分方向整理|涵盖神经网络结构、医学影像、图像去雾等方向

专栏 / CVPR'23 最新 99 篇论文分方向整理|涵盖神经网络结构、医学影像、图像去雾等方向

CVPR'23 最新 99 篇论文分方向整理|涵盖神经网络结构、医学影像、图像去雾等方向

2023年04月24日 10:49 --阅读 · --喜欢 · 极市平台
粉丝: 3.7万 文章: 207

CVPR2023已经放榜,今年有2360篇,接收率为25.78%。在CVPR2023正式会议召开前,为了让大家更快地获取和学习到计算机视觉前沿技术,极市对CVPR023 最新论文进行追踪,包括分研究方向的论文、代码汇总以及论文技术直播分享。

CVPR 2023 论文分方向整理目前在极市社区持续更新中,已累计更新了 919 篇,项目地址: cvmart.net/community/de

以下是最近更新的 CVPR 2023 论文,涵盖神经网络结构、医学影像、ReId、图像去雾、异常检测等方向。

下载地址: cvmart.net/community/de

2D目标检测(2D Object Detection)

[1]Mapping Degeneration Meets Label Evolution: Learning Infrared Small Target Detection with Single Point Supervision
paper: arxiv.org/abs/2304.0148
code: github.com/xinyiying/le

[2]Multi-view Adversarial Discriminator: Mine the Non-causal Factors for Object Detection in Unseen Domains
paper: arxiv.org/abs/2304.0295

[3]Continual Detection Transformer for Incremental Object Detection
paper: arxiv.org/abs/2304.0311

[4]DetCLIPv2: Scalable Open-Vocabulary Object Detection Pre-training via Word-Region Alignment
paper: arxiv.org/abs/2304.0451

[5]Benchmarking the Physical-world Adversarial Robustness of Vehicle Detection
paper: arxiv.org/abs/2304.0509

3D目标检测(3D object detection)

[1]Hierarchical Supervision and Shuffle Data Augmentation for 3D Semi-Supervised Object Detection
paper: arxiv.org/abs/2304.0146
code: github.com/azhuantou/hs

[2]Curricular Object Manipulation in LiDAR-based Object Detection
paper: arxiv.org/abs/2304.0424
code: github.com/zzy816/com

人物交互检测(HOI Detection)

[1]Instant-NVR: Instant Neural Volumetric Rendering for Human-object Interactions from Monocular RGBD Stream
paper: arxiv.org/abs/2304.0318

[2]Relational Context Learning for Human-Object Interaction Detection
paper: arxiv.org/abs/2304.0499

异常检测(Anomaly Detection)

[1]Robust Outlier Rejection for 3D Registration with Variational Bayes
paper: arxiv.org/abs/2304.0151
code: github.com/jiang-hb/vbr

[2]Video Event Restoration Based on Keyframes for Video Anomaly Detection
paper: arxiv.org/abs/2304.0511

语义分割(Semantic Segmentation)

[1]DiGA: Distil to Generalize and then Adapt for Domain Adaptive Semantic Segmentation
paper: arxiv.org/abs/2304.0222
code: github.com/fy-vision/di

[2]Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation
paper: arxiv.org/abs/2304.0299
code: github.com/cvlab-unibo/

[3]Federated Incremental Semantic Segmentation
paper: arxiv.org/abs/2304.0462
code: github.com/jiahuadong/f

[4]Continual Semantic Segmentation with Automatic Memory Sample Selection
paper: arxiv.org/abs/2304.0501

深度估计(Depth Estimation)

[1]EGA-Depth: Efficient Guided Attention for Self-Supervised Multi-Camera Depth Estimation
paper: arxiv.org/abs/2304.0336

[2]DualRefine: Self-Supervised Depth and Pose Estimation Through Iterative Epipolar Sampling and Refinement Toward Equilibrium
paper: arxiv.org/abs/2304.0356
code: github.com/antabangun/d

人体解析/人体姿态估计(Human Parsing/Human Pose Estimation)

[1]A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation from a Single RGB Image
paper: arxiv.org/abs/2304.0363
code: github.com/changlongjia

[2]Monocular 3D Human Pose Estimation for Sports Broadcasts using Partial Sports Field Registration
paper: arxiv.org/abs/2304.0443
code: github.com/tobibaum/par

[3]DeFeeNet: Consecutive 3D Human Motion Prediction with Deviation Feedback
paper: arxiv.org/abs/2304.0449

视频处理(Video Processing)

[1]BiFormer: Learning Bilateral Motion Estimation via Bilateral Transformer for 4K Video Frame Interpolation
paper: arxiv.org/abs/2304.0222
code: github.com/junheum/bifo

超分辨率(Super Resolution)

[1]Better "CMOS" Produces Clearer Images: Learning Space-Variant Blur Estimation for Blind Image Super-Resolution
paper: arxiv.org/abs/2304.0354

图像复原/图像增强/图像重建(Image Restoration/Image Reconstruction)

[1]Generative Diffusion Prior for Unified Image Restoration and Enhancement
paper: arxiv.org/abs/2304.0124

[2]CherryPicker: Semantic Skeletonization and Topological Reconstruction of Cherry Trees
paper: arxiv.org/abs/2304.0470

图像去噪/去模糊/去雨去雾(Image Denoising)

[1]HyperCUT: Video Sequence from a Single Blurry Image using Unsupervised Ordering
paper: arxiv.org/abs/2304.0168

[2]RIDCP: Revitalizing Real Image Dehazing via High-Quality
codebook Priors
paper: arxiv.org/abs/2304.0399
code: github.com/RQ-Wu/RIDCP_

人脸识别/检测(Facial Recognition/Detection)

[1]Gradient Attention Balance Network: Mitigating Face Recognition Racial Bias via Gradient Attention
paper: arxiv.org/abs/2304.0228

[2]Micron-BERT: BERT-based Facial Micro-Expression Recognition
paper: arxiv.org/abs/2304.0319
code: github.com/uark-cviu/mi

人脸生成/合成/重建/编辑(Face Generation/Face Synthesis/Face Reconstruction/Face Editing)

[1]Learning Personalized High Quality Volumetric Head Avatars from Monocular RGB Videos
paper: arxiv.org/abs/2304.0143

[2]StyleGAN Salon: Multi-View Latent Optimization for Pose-Invariant Hairstyle Transfer
paper: arxiv.org/abs/2304.0274

[3]GANHead: Towards Generative Animatable Neural Head Avatars
paper: arxiv.org/abs/2304.0395

目标跟踪(Object Tracking)

[1]Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion
paper: arxiv.org/abs/2304.0189

[2]Unsupervised Sampling Promoting for Stochastic Human Trajectory Prediction
paper: arxiv.org/abs/2304.0429
code: github.com/viewsetting/

图像&视频检索/视频理解(Image&Video Retrieval/Video Understanding)

[1]Improving Image Recognition by Retrieving from Web-Scale Image-Text Data
paper: arxiv.org/abs/2304.0517

行人重识别/检测(Re-Identification/Detection)

[1]PartMix: Regularization Strategy to Learn Part Discovery for Visible-Infrared Person Re-identification
paper: arxiv.org/abs/2304.0153

[2]Shape-Erased Feature Learning for Visible-Infrared Person Re-Identification
paper: arxiv.org/abs/2304.0420
code: github.com/jiawei151/sg

图像/视频字幕(Image/Video Caption)

[1]Cross-Domain Image Captioning with Discriminative Finetuning
paper: arxiv.org/abs/2304.0166
code: github.com/facebookrese

[2]Model-Agnostic Gender Debiased Image Captioning
paper: arxiv.org/abs/2304.0369

医学影像(Medical Imaging)

[1]Topology-Guided Multi-Class Cell Context Generation for Digital Pathology
paper: arxiv.org/abs/2304.0225

[2]Deep Prototypical-Parts Ease Morphological Kidney Stone Identification and are Competitively Robust to Photometric Perturbations
paper: arxiv.org/abs/2304.0407
code: github.com/danielf29/pr

[3]Coherent Concept-based Explanations in Medical Image and Its Application to Skin Lesion Diagnosis
paper: arxiv.org/abs/2304.0457
code: github.com/cristianopat

图像生成/图像合成(Image Generation/Image Synthesis)

[1]Toward Verifiable and Reproducible Human Evaluation for Text-to-Image Generation
paper: arxiv.org/abs/2304.0181

[2]Few-shot Semantic Image Synthesis with Class Affinity Transfer
paper: arxiv.org/abs/2304.0232

点云(Point Cloud)

[1]MEnsA: Mix-up Ensemble Average for Unsupervised Multi Target Domain Adaptation on 3D Point Clouds
paper: arxiv.org/abs/2304.0155
code: github.com/sinashish/me

场景重建/视图合成/新视角合成(Novel View Synthesis)

[1]Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field
paper: arxiv.org/abs/2304.0352

[2]POEM: Reconstructing Hand in a Point Embedded Multi-view Stereo
paper: arxiv.org/abs/2304.0403
code: github.com/lixiny/poem

[3]Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos
paper: arxiv.org/abs/2304.0445

[4]Neural Lens Modeling
paper: arxiv.org/abs/2304.0484

[5]One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural Radiance Field
paper: arxiv.org/abs/2304.0509

[6]MonoHuman: Animatable Human Neural Field from Monocular Video
paper: arxiv.org/abs/2304.0200

[7]GINA-3D: Learning to Generate Implicit Neural Assets in the Wild
paper: arxiv.org/abs/2304.0216

[8]Neural Fields meet Explicit Geometric Representation for Inverse Rendering of Urban Scenes
paper: arxiv.org/abs/2304.0326

文本检测/识别/理解(Text Detection/Recognition/Understanding)

[1]Towards Unified Scene Text Spotting based on Sequence Generation
paper: arxiv.org/abs/2304.0343

神经网络结构设计(Neural Network Structure Design)

[1]SMPConv: Self-moving Point Representations for Continuous Convolution
paper: arxiv.org/abs/2304.0233
code: github.com/sangnekim/sm

CNN

[1]VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution
paper: arxiv.org/abs/2304.0143
code: github.com/jaeill/CVPR2

Transformer

[1]METransformer: Radiology Report Generation by Transformer with Multiple Learnable Expert Tokens
paper: arxiv.org/abs/2304.0221

[2]MethaneMapper: Spectral Absorption aware Hyperspectral Transformer for Methane Detection
paper: arxiv.org/abs/2304.0276

[3]Visual Dependency Transformers: Dependency Tree Emerges from Reversed Attention
paper: arxiv.org/abs/2304.0328
code: github.com/dingmyu/depe

[4]Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention
paper: arxiv.org/abs/2304.0423
code: github.com/leaplabthu/s

图神经网络(GNN)

[1]Adversarially Robust Neural Architecture Search for Graph Neural Networks
paper: arxiv.org/abs/2304.0416

归一化/正则化(Batch Normalization)

[1]Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling
paper: arxiv.org/abs/2304.0393

模型训练/泛化(Model Training/Generalization)

[1]Re-thinking Model Inversion Attacks Against Deep Neural Networks
paper: arxiv.org/abs/2304.0166

[2]Improved Test-Time Adaptation for Domain Generalization
paper: arxiv.org/abs/2304.0449

长尾分布(Long-Tailed Distribution)

[1]Long-Tailed Visual Recognition via Self-Heterogeneous Integration with Knowledge Excavation
paper: arxiv.org/abs/2304.0127
code: github.com/jinyan-06/sh

视觉表征学习(Visual Representation Learning)

[1]HNeRV: A Hybrid Neural Representation for Videos
paper: arxiv.org/abs/2304.0263
code: github.com/haochen-rye/

多模态学习(Multi-Modal Learning)

[1]Detecting and Grounding Multi-Modal Media Manipulation
paper: arxiv.org/abs/2304.0255
code: github.com/rshaojimmy/m

[2]Learning Instance-Level Representation for Large-Scale Multi-Modal Pretraining in E-commerce
paper: arxiv.org/abs/2304.0285

[3]Vita-CLIP: Video and text adaptive CLIP via Multimodal Prompting
paper: arxiv.org/abs/2304.0330
code: github.com/talalwasim/v

视觉-语言(Vision-language)

[1]Learning to Name Classes for Vision and Language Models
paper: arxiv.org/abs/2304.0183

[2]VLPD: Context-Aware Pedestrian Detection via Vision-Language Semantic Self-Supervision
paper: arxiv.org/abs/2304.0313
code: github.com/lmy98129/vlp

[3]CrowdCLIP: Unsupervised Crowd Counting via Vision-Language Model
paper: arxiv.org/abs/2304.0423
code: github.com/dk-liang/cro

[4]Improving Vision-and-Language Navigation by Generating Future-View Image Semantics
paper: arxiv.org/abs/2304.0490

场景图生成(Scene Graph Generation)

[1]Devil's on the Edges: Selective Quad Attention for Scene Graph Generation
paper: arxiv.org/abs/2304.0349

视觉推理/视觉问答(Visual Reasoning/VQA)

[1]Language Models are Causal Knowledge Extractors for Zero-shot Video Question Answering
paper: arxiv.org/abs/2304.0375

数据集(Dataset)

[1]Uncurated Image-Text Datasets: Shedding Light on Demographic Bias
paper: arxiv.org/abs/2304.0282
code: github.com/noagarcia/ph

小样本学习/零样本学习(Few-shot Learning/Zero-shot Learning)

[1]Zero-shot Generative Model Adaptation via Image-specific Prompt Learning
paper: arxiv.org/abs/2304.0311

迁移学习/domain/自适应(Transfer Learning/Domain Adaptation)

[1]DATE: Domain Adaptive Product Seeker for E-commerce
paper: arxiv.org/abs/2304.0366

[2]Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer
paper: arxiv.org/abs/2304.0446

持续学习(Continual Learning/Life-long Learning)

[1]Asynchronous Federated Continual Learning
paper: arxiv.org/abs/2304.0362
code: github.com/lttm/fedspac

[2]Exploring Data Geometry for Continual Learning
paper: arxiv.org/abs/2304.0393

[3]Task Difficulty Aware Parameter Allocation & Regularization for Lifelong Learning
paper: arxiv.org/abs/2304.0528
code: github.com/wenjinw/par

[4]Online Distillation with Continual Learning for Cyclic Domain Shifts
paper: arxiv.org/abs/2304.0123

视觉定位/位姿估计(Visual Localization/Pose Estimation)

[1]OrienterNet: Visual Localization in 2D Public Maps with Neural Matching
paper: arxiv.org/abs/2304.0200

增量学习(Incremental Learning)

[1]On the Stability-Plasticity Dilemma of Class-Incremental Learning
paper: arxiv.org/abs/2304.0166

[2]PCR: Proxy-based Contrastive Replay for Online Class-Incremental Continual Learning
paper: arxiv.org/abs/2304.0440

强化学习(Reinforcement Learning)

[1]Reinforcement Learning-Based Black-Box Model Inversion Attacks
paper: arxiv.org/abs/2304.0462

元学习(Meta Learning)

[1]Meta-causal Learning for Single Domain Generalization
paper: arxiv.org/abs/2304.0370

[2]Meta Compositional Referring Expression Segmentation
paper: arxiv.org/abs/2304.0441

[3]Meta-Learning with a Geometry-Adaptive Preconditioner
paper: arxiv.org/abs/2304.0155
code: github.com/suhyun777/cv

半监督学习/弱监督学习/无监督学习/自监督学习(Self-supervised Learning/Semi-supervised Learning)

[1]Weakly supervised segmentation with point annotations for histopathology images via contrast-based variational model
paper: arxiv.org/abs/2304.0357

[2]Token Boosting for Robust Self-Supervised Visual Transformer Pre-training
paper: arxiv.org/abs/2304.0417

[3]SOOD: Towards Semi-Supervised Oriented Object Detection
paper: arxiv.org/abs/2304.0451
code: github.com/hamperdredes

[4]Defending Against Patch-based Backdoor Attacks on Self-Supervised Learning
paper: arxiv.org/abs/2304.0148
code: github.com/ucdvision/pa

神经网络可解释性(Neural Network Interpretability)

[1]Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
paper: arxiv.org/abs/2304.0482

图像计数(Image Counting)

[1]Density Map Distillation for Incremental Object Counting
paper: arxiv.org/abs/2304.0525

其他

[1]Bridging the Gap between Model Explanations in Partially Annotated Multi-label Classification
paper: arxiv.org/abs/2304.0180
code: github.com/youngwk/brid

[2]Knowledge Combination to Learn Rotated Detection Without Rotated Annotation
paper: arxiv.org/abs/2304.0219

[3]CloSET: Modeling Clothed Humans on Continuous Surface with Explicit Template Decomposition
paper: arxiv.org/abs/2304.0316

[4]DC2: Dual-Camera Defocus Control by Learning to Refocus
paper: arxiv.org/abs/2304.0328

投诉或建议
浅析:CZ BREN 2步枪设计亮点 从不成功的前身 经历怎样凤凰涅槃
可能很少有人会注意到捷克军队新装备的CZ BREN 2步枪。没错,这种步枪已经是CZ集团为捷克陆军研制的第二代BREN步枪,这也说明了该枪在研制过程中遭遇了某些曲折,而这样的曲折让它更值得我们关注。本文为俄罗斯“卡拉什尼科夫”网站发表的介绍文章,作者米哈伊尔·捷格佳廖夫,本人翻译并编辑给大家分享。布伦Mk II轻机枪。全世界的轻武器爱好者一提起“布伦(BREN)”这个名字,肯定会想到机匣顶部安装巨大弧形弹匣的英国轻机枪,该枪是二战时期英军的制式武器,甚至成为英军的标志之一。相信专家级的发烧友都非常清楚,B
Talk预告 | 南洋理工大学博士后李祥泰:基于Transformer的视觉分割模型总结、回顾
本期为TechBeat人工智能社区第517期线上Talk!北京时间7月27日(周四)20:00,南洋理工大学博士后研究员—李祥泰的Talk将准时在TechBeat人工智能社区开播!他与大家分享的主题是: “基于Transformer的视觉分割模型总结、回顾与展望”,届时将系统性地回顾与总结Transformer模型Talk·信息▼主题:基于Transformer的视觉分割模型总结、回顾与展望嘉宾:南洋理工大学博士后研究员 李祥泰时间:北京时间 7月27日(周四)20:00地点:TechBeat人工智能社区