添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

Prediction of ferromagnetic materials with high Curie temperature based on material composition information

Sun Jing-Qi , Wu Xu-Cai , Que Zhi-Xiong , Zhang Wei-Bing 寻找具有高居里温度的铁磁材料是凝聚态物理的热点问题. 本文建立了有效的基于材料组分信息的居里温度机器学习模型, 并预测了多种高居里温度铁磁材料. 基于收集到的1568个铁磁材料数据, 并以铁磁材料的组分信息作为描述符, 通过超参数优化和十折交叉验证, 构建了支持向量回归、核岭回归、随机森林及极端随机树四种高效的机器学习模型. 这其中, 极端随机树模型具有最好的预测性能, 其交叉验证 R 2 评分可达81.48%. 同时, 还应用极端随机树模型对Materials Project数据库36949种铁磁材料进行了预测, 发现了338个居里温度大于600 K的铁磁材料. 本文提出的方法可以为获取具有高居里温度的铁磁材料提供有价值的帮助, 加快铁磁材料设计的过程. 机器学习 /  铁磁材料 /  材料组分 /  The search for ferromagnetic materials with high Curie temperature ( T c ) is a hot issue in condensed matter physics. In this work, an effective machine learning model of Curie temperature based on material component information is established to predict a variety of ferromagnetic materials with high Curie temperature. Based on the collected data of 1568 ferromagnetic materials, and taking the component information of ferromagnetic materials as descriptors, in this work four efficient machine learning models are constructed, namely support vector regression, kernel ridge regression, random forest and extremely randomized trees, through hyperparameter optimization and ten-break cross-validation. Of them, extremely randomized tree model has the best prediction performance, and its cross-validation R 2 score can reach 81.48%. At the same time, the extremely randomized tree model is also used to predict 36949 materials in the materials project database, and 338 ferromagnetic materials with T c greater than 600 K are found in this work. The method proposed in this paper can help obtain ferromagnetic materials with high Curie temperature and accelerate the process of ferromagnetic material design. Keywords: machine learning /  ferromagnetic materials /  material component /  Curie temperature  欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习:基于图卷积神经网络的分子动力学模拟 . 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240156 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用 . 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632 朱 骏, 卢网平, 刘秋朝, 毛翔宇, 惠 荣, 陈小兵. (Bi, La)4Ti3O12-Sr(Bi, La)4Ti4O15共生结构铁电材料性能研究 . 物理学报, 2003, 52(10): 2627-2631. doi: 10.7498/aps.52.2627