DUAN Liang-Jie, SHA Yu-Ting, LUO Yi, XIA Xiao-Le
叠氮溴化丙锭-荧光定量PCR法实时快速检测5种乳杆菌活菌数方法的建立与应用
Quantitative PCR combined with propidium monoazide treatment for real-time and rapid determination of five viable
Lactobacillus
微生物学通报, 2020, 47(12): 4317-4327
Microbiology China, 2020, 47(12): 4317-4327
DOI:
10.13344/j.microbiol.china.200050
1. 江南大学工业生物技术教育部重点实验室 江苏 无锡 214122;
2. 江南大学生物工程学院 江苏 无锡 214122
收稿日期: 2020-01-17; 接受日期: 2020-03-09; 网络首发日期: 2020-04-26
基金项目: 国家重点研发计划(2017YFC1600401);国家自然科学面上基金(31972064);国家轻工技术与工程一流学科自主课题资助(2018-14);江苏省青蓝工程
摘要
:
【背景】
乳杆菌属是发酵食品中最常见的微生物之一,与食品的品质和安全密切相关,定量检测乳杆菌活菌数、解析乳杆菌群落组成对发酵乃至肠道微生物等具有重要意义。
【目的】
建立一种在种水平上定量检测5种乳杆菌活菌数的叠氮溴化丙锭-荧光定量PCR (propidium monoazide-quantitative PCR,PMA-qPCR)检测方法并探讨其适用性。
【方法】
以植物乳杆菌、发酵乳杆菌、短乳杆菌、嗜酸乳杆菌和干酪乳杆菌等发酵食品中常见的5种乳杆菌为目标菌株,查找并筛选特异性引物用于荧光定量PCR (qPCR)检测,优化叠氮溴化丙锭(PMA)处理条件,测定PMA-qPCR检测法的特异性、灵敏度及可靠性。最后利用PMA-qPCR法检测黄酒酿造过程中5种乳杆菌的活菌数。
【结果】
PMA最佳处理条件为:浓度20 μmol/L下暗处理15 min后曝光15 min,此时可抑制样品中99.89%的死菌DNA扩增。该方法特异性高,能够准确识别5种乳杆菌;线性关系强,
R
2
> 0.98;灵敏度高,检测限为10
1.8
-10
3.2
CFU/mL;重复性好,
C
q
值变异系数小于1%;与平板计数相比差异不显著(统计学上),
P
> 0.05。利用该方法检测黄酒中5种乳杆菌的活菌数,发现发酵乳杆菌、干酪乳杆菌和短乳杆菌是主要的乳杆菌(总计占比59%-89%),与已知黄酒酿造中乳杆菌群落组成相符。
【结论】
建立的PMA-qPCR法能够快速、准确地检测5种乳杆菌的活菌数,为解析样品中乳杆菌的实时组成及检测具有活性但不可培养(viable but nonculturable,VBNC)状态的乳杆菌提供了可靠的手段。
关键词
:
乳杆菌
活菌
叠氮溴化丙锭
荧光定量PCR
实时快速检测
Quantitative PCR combined with propidium monoazide treatment for real-time and rapid determination of five viable
Lactobacillus
1. Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China;
2. School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
Received: 17-01-2020; Accepted: 09-03-2020; Published online: 26-04-2020
Foundation item: National Key Research and Development Program of China (2017YFC1600401); National Natural Science Foundation of China (31972064); National First-class Discipline Program of Light Industry Technology and Engineering of China (2018-14); Qinglan Project of Jiangsu Province
Abstract
:
[Background]
Lactobacillus
is commonly found in fermented foods which associated with food quality and safety. Quantifying the real-time dynamic and tracking the composition of viable
Lactobacillus
is substantial to explore metabolic function in fermentation and even intestinal microorganism system.
[Objective]
To establish and employ a real-time and rapid approach to detect 5 kinds of viable
Lactobacillus
at species level by quantitative PCR combined with propidium monoazide (PMA) treatment, and then assess its applicability.
[Methods]
Using
Lactobacillu plantarum
,
Lactobacillus fermentum
,
Lactobacillus brevis
,
Lactobacillus acidophilus
and
Lactobacillus casei
which are the common
Lactobacillus
strains in fermented foods as the target, the specific primers for quantitative PCR (qPCR) analysis were searched and screened. We also optimized PMA conditions and ascertained the specificity, sensitivity and reliability of the method. Then 5 kinds of viable
Lactobacillus
during Chinese rice wine fermentation were quantified by PMA-qPCR.
[Results]
The optimal process included that 20 μmol/L PMA for 15 min incubation followed by 15 min photoactivation can eliminate 99.89% amplified signal of non-viable bacteria. This method exhibited good specificity to accurately identify 5 kinds of
Lactobacillus
, and possessed strong linear relationship (
R
2
> 0.98) and high sensitivity (limit of detection=10
1.8
- 10
3.2
CFU/mL) and the variation coefficients of
C
q
values were less than 1%. Additionally, it had no statistically significant (
P
> 0.05) difference compared with plate count. Furthermore, the PMA-qPCR method was applied during Chinese rice wine fermentation, indicating that
Lactobacillus fermentum
,
Lactobacillus casei
and
Lactobacillus brevis
were the dominant
Lactobacillus
(59%-89%), which was consistent with known
Lactobacillus
composition in Chinese rice wine brewing system.
[Conclusion]
The established PMA-qPCR method could quickly and accurately quantify 5 kinds of viable
Lactobacillus
, which provided a feasible approach on tracking the real-time composition of viable
Lactobacillus
and detecting viable but nonculturable
Lactobacillus
in samples.
Keywords
:
Lactobacillus
Viable bacteria
Propidium monoazide
Quantitative PCR
Real-time and rapid detection
乳杆菌属(
Lactobacillus
)是一类革兰氏阳性细菌,广泛存在于食品、饲料、植物、脊椎动物、无脊椎动物和人类中
[
1
]
。由于其出色的发酵性能和“益生”特性
[
2
]
而被广泛应用于发酵食品领域。一方面乳杆菌产生的有机酸、胞外多糖、γ-氨基丁酸等物质极大地增强了发酵食品的风味和保健功能;另一方面乳杆菌是导致食品发生腐败变质、影响食品安全的主要微生物之一
[
3
-
4
]
。与大多数发酵食品一致,黄酒具有丰富的微生物群落,而乳杆菌的占比很大(约占细菌总量的0.59%-65.17%)
[
5
]
。丰富的乳杆菌群落与复杂的发酵环境共同作用,最终形成了黄酒独特的风味与品质。因此,解析乳杆菌在黄酒乃至其他发酵食品中的实时组成情况,尤其是检测乳杆菌的实时活菌数对于发酵食品的安全制造及新型发酵食品的开发都具有重要意义。
目前已经建立了如基因组测序
[
6
]
、荧光原位杂交
[
7
]
、末端限制性片段长度多态性分析(terminal- restriction fragment length polymorphism,T-RFLP)
[
8
]
、磷脂脂肪酸检测(phospholipid fatty acid,PLFA)
[
9
]
、荧光定量PCR (quantitative PCR,qPCR)
[
10
]
等多种非培养的乳杆菌检测方法。其中,荧光定量PCR是一种基于特异性引物定量检测微生物的方法,因其具有快速、灵敏、特异等特点而被广泛应用于各种样品中微生物的检测
[
10
-
12
]
。但传统qPCR既能扩增活菌DNA,又能扩增死菌DNA,无法区分活细胞与死细胞。反转录荧光定量PCR (reverse transcription qPCR,RT-qPCR)虽然能够达到检测活菌的效果,但因RNA易降解等特性而不适宜于复杂样品中微生物的检测。叠氮溴化丙锭(propidium monoazide,PMA)是一种常见的活菌染料,能够穿透死亡细胞/膜损伤细胞的细胞膜插入核酸,在强光照射下能够与DNA形成稳定的共价氮碳键不可逆地修饰DNA,阻止死细胞/膜损伤细胞的DNA进行PCR扩增
[
13
]
。PMA耦合qPCR不仅能够选择性地检测目标微生物的活菌数,而且具有稳定、快速、灵敏等特点,成为了检测样品中乳杆菌活菌数的有利方法。尽管PMA耦合qPCR在微生物活菌检测中已有广泛应用
[
10
-
11
,
14
-
15
]
,但不同微生物对PMA的敏感度不同
[
16
]
,因此应当针对乳杆菌建立特定的PMA处理方式,以获得更为准确的活菌检测结果。
本研究以发酵食品中常见的5种乳杆菌为目标菌株,筛选得到高特异性乳杆菌引物,通过PMA-qPCR检测,建立一种实时定量检测5种不同乳杆菌活菌数的特异性方法,并将其应用于黄酒酿造过程。该方法对于其他样品中乳杆菌乃至乳酸菌的种水平的实时定量活菌数检测也具有一定的参考价值。
1 材料与方法
1.1 材料
1.1.1 黄酒样品
实验用黄酒发酵醪液全部取自江苏某黄酒厂,黄酒酿造工艺和取样参考文献[
4
]。
1.1.2 主要试剂和仪器及培养基
叠氮溴化丙锭(PMA),Biotium公司;细菌基因组DNA提取试剂盒(TaKaRa MiniBEST Bacteria Genomic DNA Extraction Kit),宝生物工程(大连)有限公司;DNA提取试剂盒(Fast DNA
®
Spin Kit for Soil),MP Biomedicals公司;ChamQ Universal SYBR qPCR Master Mix,南京诺唯赞生物科技股份有限公司。650 W卤素灯,OSRAM公司;实时荧光定量基因扩增仪,Bio-Rad公司;核酸与蛋白分析仪,赛默飞世尔科技公司。MRS肉汤培养基,北京索莱宝科技有限公司;MSA培养基(g/L):牛肉膏1.0,蛋白胨10.0,甘露糖醇10.0,氯化钠75.0,pH 7.4;GY培养基(g/L):葡萄糖10.0,酵母提取物10.0,pH自然;LB培养基(g/L):蛋白胨10.0,酵母粉5.0,氯化钠10.0,pH自然。
1.1.3 菌株及培养方式
植物乳杆菌(
Lactobacillus plantarum
) ACBC271购自酿造微生物应用中心,短乳杆菌(
Lactobacillus brevis
) ATCC367和巴氏醋酸杆菌(
Acetobacter pasteurianus
) ATCC33445购自美国菌种保藏中心,嗜酸乳杆菌(
Lactobacillus acidophilus
) CICC20244和乳杆菌(
Lactobacillus
sp.) CICC6251购自中国工业微生物菌种保藏中心,木糖葡萄球菌(
Staphylococcus xylosus
) CGMCC1.8382购自中国普通微生物菌种保藏管理中心;大肠杆菌(
Escherichia coli
) JM109由本实验室提供;巴氏醋酸杆菌(
Acetobacter pasteurianus
) CICIM B7003分离自酿造工厂,发酵乳杆菌(
Lactobacillus fermentum
)、干酪乳杆菌(
Lactobacillus casei
)、4株乳杆菌(
Lactobacillus
sp.)和10株肠球菌(
Enterococcus
spp.)分离自黄酒发酵醪液,4株芽孢杆菌(
Bacillus
spp
.
)分离自豆瓣酱;以上菌株由本实验室保存。乳杆菌和肠球菌采用MRS肉汤培养基37 ℃静置培养,木糖葡萄球菌采用MSA培养基37 ℃静置培养,醋酸杆菌采用GY培养基30 ℃、180 r/min振荡培养,芽孢杆菌和大肠杆菌采用LB培养基37 ℃、180 r/min振荡培养。
1.2 方法
1.2.1 基因组DNA的提取
微生物纯培养物基因组DNA按照TaKaRa MiniBEST Bacteria Genomic DNA Extraction Kit产品说明书进行提取,黄酒发酵醪液微生物基因组DNA按照Fast DNA
®
Spin Kit for Soil产品说明书提取。所有基因组DNA通过核酸与蛋白分析仪检测其纯度与浓度后置于-20 ℃保存待用。
1.2.2 PMA处理与优化
参考Gobert等
[
17
]
的方法制作热致死乳杆菌,具体方法:将乳杆菌在MRS培养基中37 ℃静置培养24 h后,用无菌生理盐水洗涤并稀释至10
4
CFU/mL,作为活菌菌液记为V4。另取稀释至10
7
CFU/mL的菌液于90 ℃水浴15 min (通过平板计数确保没有活菌),作为死菌菌液记为D7。取适量活菌菌液与死菌菌液混合作为待测样品,调整其浊度一致,记为V4+D7。
在待测样品中加入PMA,调整其终浓度为5、10、20、30、50 μmol/L,分别在黑暗环境反应5、10、15、20、25、30 min,然后在650 W卤素灯下照射5、10、15、20、25、30 min (样品置于冰上,距离灯管20 cm)后,室温、12 000 r/min离心2 min用于后续基因组提取,通过qPCR检测其对死菌DNA的抑制率,计算公式如下:
C
V4+D7
:待测样品未经PMA处理的菌落浓度,CFU/mL;
C
V4
:V4样品的菌落浓度,CFU/mL;
C
i
:待测样品经PMA处理后的菌落浓度,CFU/mL。
1.2.3 引物获取及特异性检测
所有引物均从已发表的文献中获取,引物来源及详细信息可见
表 1
,引物由生工生物工程(上海)股份有限公司合成。通过NCBI数据库、RDP数据库和TestPrime (
https://www.arb-silva.de/search/testprime/
)检索引物特异性,然后通过Oligo 7 (Molecular Biology Insights, USA)、silico PCR (
http://insilico.ehu.es/PCR/
)和Serial Cloner 2.6 (serialbasics.free.fr/Serial-Cloner.heml)模拟PCR并对引物评价分析。以1.1.3中的28株细菌为目标菌株,提取基因组后通过qPCR来验证引物特异性。
表 1
qPCR引物
Table 1
Primers used for qPCR analysis
1.2.4 qPCR方法的建立
qPCR反应体系:ChamQ Universal SYBR qPCR Master Mix 10 μL,上、下游引物(10 μmol/L)各0.4 μL,DNA模板1.5 μL,添加双蒸水补足体积至20 μL。
qPCR反应条件:95 ℃ 3 min;95 ℃ 10 s,60 ℃ 30 s (收集荧光),共39个循环。循环结束后进入熔解曲线分析,程序为:65 ℃逐步升温至95 ℃,每升温0.5 ℃检测一次荧光信号,每次检测持续5 s。
1.2.5 标准曲线的建立
乳杆菌在MRS培养基中37 ℃静置培养24 h后通过平板计数法测定原始浓度,同时用无菌生理盐水洗涤2-4次后按照1.2.1的方法将提取的微生物基因组DNA以10倍梯度进行稀释,通过qPCR测定对应的
C
q
值,建立菌落浓度(log
10
CFU/mL)与
C
q
值之间的线性关系,并通过公式
E
=10
-1/
s
-1计算扩增效率,其中
s
为标准曲线的斜率。
1.2.6 qPCR方法的重复性实验及其与平板计数法的对比
按照1.1.3的方式活化5种乳杆菌(
Lactobacillus plantarum
,
Lactobacillus fermentum
,
Lactobacillus brevis
,
Lactobacillus acidophilus
,
Lactobacillus casei
),用无菌生理盐水洗涤并梯度稀释,选取不同稀释倍数的菌液通过PMA-qPCR检测菌落浓度,重复3次,计算
C
q
值的变异系数,对该方法的稳定性进行评价。同时使用平板计数法检测5种乳杆菌的含量,通过配对样本
t
检验对比两种检测方法检测结果的差异,评估该方法的可靠性。
1.2.7 PMA-qPCR检测法在黄酒酿造中的应用
黄酒发酵醪液经无菌生理盐水洗涤2-4次后重悬,调整其浊度与1.2.2微生物纯培养物的浊度一致,然后用最优的PMA处理条件进行处理,按照1.2.1的方法提取微生物基因组DNA,通过qPCR检测5种乳杆菌的活菌数。
1.3 数据分析
所有实验均重复3次,数据结果以平均数±标准差表示。利用Excel 2016计算PMA-qPCR重复性实验的变异系数
CV
。PMA-qPCR检测法与平板计数检测法对同一样本检测结果的显著性差异分析通过Origin 8.0的配对样本
t
检验完成。
2 结果与分析
2.1 PMA处理条件的优化
如
图 1A
所示,微量的PMA (5 μmol/L)已经能够抑制84.83%的死菌DNA扩增,随着PMA浓度的增加,死菌抑制率得到了进一步的提高;当浓度提升至20 μmol/L时,99.84%的死菌DNA与PMA结合而无法被扩增,随后PMA浓度的增加不再显著增加死菌抑制率,因此PMA最佳处理浓度为20 μmol/L。如
图 1B
所示,PMA具有相对“温和”的细胞膜渗透能力,暗孵育时间的增加并不会使PMA穿透活菌细胞膜造成假阴性结果,为提高检测结果的精确性,可将暗孵育时间设置为15 min,此时PMA对死菌DNA的抑制率达到了99.89%;当曝光时间分别为5 min和10 min时,死菌DNA与PMA交联不彻底,仍有41.76%和7.09%的死菌DNA未与PMA结合表现出PCR扩增能力;当曝光时间增加到15 min后,99.84%的死菌DNA被PMA抑制,达到了较好的活菌检测效果;随着曝光时间的继续增加,PMA对死菌DNA的抑制率不再继续上升,因此15 min的曝光时间对于死菌DNA信号的抑制是充分的。
Huang Y. Metabolic control of biogenic amines and its application in semi-dry Chinese rice wine[D]. Wuxi: Master's Thesis of Jiangnan University, 2018 (in Chinese)
黄杨.半干型黄酒生物胺代谢调控研究及其应用[D].无锡: 江南大学硕士学位论文, 2018
Hong XT, Chen J, Liu L, et al. Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine[J]. Scientific Reports, 2016, 6: 26621.
Alqurashi RM, Alarifi SN, Walton GE, et al.
In vitro
approaches to assess the effects of acai (
Euterpe oleracea
) digestion on polyphenol availability and the subsequent impact on the faecal microbiota[J]. Food Chemistry, 2017, 234: 190-198.
Qiu R, Lu J. Bacterial community dynamics during malting based on T-RFLP and 454 pyrosequencing profiles[J]. Journal of Food Science and Biotechnology, 2019, 38(4): 71-77. (in Chinese)
邱然, 陆健. T-RFLP和454焦磷酸测序方法分析制麦过程细菌群落的动态变化[J]. 食品与生物技术学报, 2019, 38(4): 71-77.
Wu CD, Zheng J, Huang J, et al. Reduced nitrite and biogenic amine concentrations and improved flavor components of Chinese sauerkraut via co-culture of
Lactobacillus
plantarum
and
Zygosaccharomyces
rouxii
[J]. Annals of Microbiology, 2014, 64(2): 847-857.
Lv XC, Li Y, Qiu WW, et al. Development of propidium monoazide combined with real-time quantitative PCR (PMA-qPCR) assays to quantify viable dominant microorganisms responsible for the traditional brewing of Hong Qu glutinous rice wine[J]. Food Control, 2016, 66: 69-78.
Rizzotti L, Levav N, Fracchetti F, et al. Effect of UV-C treatment on the microbial population of white and red wines, as revealed by conventional plating and PMA-qPCR methods[J]. Food Control, 2015, 47: 407-412.
Ling N, Shen JL, Guo JJ, et al. Rapid and accurate detection of viable
Vibrio
parahaemolyticus
by sodium deoxycholate-propidium monoazide-qPCR in shrimp[J]. Food Control, 2020, 109: 106883.
Emerson JB, Adams RI, Román CMB, et al. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems[J]. Microbiome, 2017, 5(1): 86.
Gensberger ET, Polt M, Konrad-Köszler M, et al. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality[J].
Water Research, 2014, 67: 367-376.
Slimani S, Robyns A, Jarraud S, et al. Evaluation of propidium monoazide (PMA) treatment directly on membrane filter for the enumeration of viable but non cultivable
Legionella
by qPCR[J].
Journal of Microbiological Methods, 2012, 88(2): 319-321.
Fittipaldi M, Nocker A, Codony F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification[J]. Journal of Microbiological Methods, 2012, 91(2): 276-289.
Gobert G, Cotillard A, Fourmestraux C, et al. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples[J]. Journal of Microbiological Methods, 2018, 148: 64-73.
Byun R, Nadkarni MA, Chhour KL, et al. Quantitative analysis of diverse
Lactobacillus
species present in advanced dental caries[J]. Journal of Clinical Microbiology, 2004, 42(7): 3128-3136.
Costa GN, Vilas-Bôas GT, Vilas-Boas LA, et al.
In silico
phylogenetic analysis of lactic acid bacteria and new primer set for identification of
Lactobacillus
plantarum
in food samples[J]. European Food Research and Technology, 2011, 233(2): 233-241.
Schwendimann L, Kauf P, Fieseler L, et al. Development of a quantitative PCR assay for rapid detection of
Lactobacillus
plantarum
and
Lactobacillus
fermentum
in cocoa bean fermentation[J]. Journal of Microbiological Methods, 2015, 115: 94-99.
Matsuda K, Tsuji H, Asahara T, et al. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules[J]. Applied and Environmental Microbiology, 2009, 75(7): 1961-1969.
Tabasco R, Paarup T, Janer C, et al. Selective enumeration and identification of mixed cultures of
Streptococcus
thermophilus
,
Lactobacillus
delbrueckii
subsp.
paracasei
and
Bifidobacterium
lactis
in fermented milk[J]. International Dairy Journal, 2007, 17(9): 1107-1114.
Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy[J]. International Journal of Food Microbiology, 1997, 36(1): 1-29.
Wu LW, Yang YF, Chen S, et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters[J].
The ISME Journal, 2017, 11(12): 2874-2878.
Wang RR, Li XM, Chen L, et al. Detection of biogenic amines produced by lactic acid bacteria isolated from the fermentation process of Chinese rice wine[J]. Food and Fermentation Industries, 2017, 43(1): 12-17. (in Chinese)
王然然, 李晓敏, 陈柳, 等. 黄酒发酵过程中乳酸菌的分离及对其产生物胺能力的评价[J].
食品与发酵工业, 2017, 43(1): 12-17.
Yu W, Li XM, Lu J, et al. Citrulline production by lactic acid bacteria in Chinese rice wine[J].
Journal of the Institute of Brewing, 2018, 124(1): 85-90.
Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria[J].
FEMS Microbiology Reviews, 2010, 34(4): 415-425.
Lai CH, Wu SR, Pang JC, et al. Designing primers and evaluation of the efficiency of propidium monoazide - quantitative polymerase chain reaction for counting the viable cells of
Lactobacillus
gasseri
and
Lactobacillus
salivarius
[J]. Journal of Food and Drug Analysis, 2017, 25(3): 533-542.
Chakravorty S, Helb D, Burday M, et al. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria[J]. Journal of Microbiological Methods, 2007, 69(2): 330-339.
Udomsil N, Chen S, Rodtong S, et al. Quantification of viable bacterial starter cultures of
Virgibacillus
sp. and
Tetragenococcus
halophilus
in fish sauce fermentation by real-time quantitative PCR[J].
Food Microbiology, 2016, 57: 54-62.
Wang D, Yamahara KM, Cao YP, et al. Absolute quantification of enterococcal 23S rRNA gene using digital PCR[J].
Environmental Science & Technology, 2016, 50(7): 3399-3408.