# S3 method for model_fit
tbl_regression(x, ...)
# S3 method for workflow
tbl_regression(x, ...)
# S3 method for survreg
tbl_regression(
tidy_fun = function(x, ...) broom::tidy(x, ...) %>% dplyr::filter(.data$term !=
"Log(scale)"),
# S3 method for mira
tbl_regression(x, tidy_fun = pool_and_tidy_mice, ...)
# S3 method for mipo
tbl_regression(x, ...)
# S3 method for lmerMod
tbl_regression(
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
# S3 method for glmerMod
tbl_regression(
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
# S3 method for glmmTMB
tbl_regression(
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
# S3 method for glmmadmb
tbl_regression(
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
# S3 method for stanreg
tbl_regression(
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
# S3 method for brmsfit
tbl_regression(
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
# S3 method for gam
tbl_regression(x, tidy_fun = tidy_gam, ...)
# S3 method for tidycrr
tbl_regression(x, tidy_fun = tidycmprsk::tidy, ...)
# S3 method for crr
tbl_regression(x, ...)
# S3 method for multinom
tbl_regression(x, ...)
-
"parsnip/workflows"
: If the model was prepared using parsnip/workflows,
the original model fit is extracted and the original
x=
argument
is replaced with the model fit. This will typically go unnoticed; however,if you've
provided a custom tidier in
tidy_fun=
the tidier will be applied to the model
fit object and not the parsnip/workflows object.
-
"survreg"
: The scale parameter is removed,
broom::tidy(x) %>% dplyr::filter(term != "Log(scale)")
-
"multinom"
: This multinomial outcome is complex, with one line per covariate per outcome (less the reference group)
-
"gam"
: Uses the internal tidier
tidy_gam()
to print both parametric and smooth terms.
-
"tidycrr"
: Uses the tidier
tidycmprsk::tidy()
to print the model terms.
-
"lmerMod"
,
"glmerMod"
,
"glmmTMB"
,
"glmmadmb"
,
"stanreg"
,
"brmsfit"
: These mixed effects
models use
broom.mixed::tidy(x, effects = "fixed")
. Specify
tidy_fun = broom.mixed::tidy
to print the random components.