>>> mod = sm.tsa.arima.ARIMA(endog, order=(1, 0, 0))
>>> res = mod.fit()
>>> print(res.summary())
Methods
clone(endog[, exog])
Clone state space model with new data and optionally new specification
filter(params[, transformed, ...])
Kalman filtering
fit([start_params, transformed, ...])
Fit (estimate) the parameters of the model.
fit_constrained(constraints[, start_params])
Fit the model with some parameters subject to equality constraints.
fix_params(params)
Fix parameters to specific values (context manager)
from_formula(formula, data[, subset])
Not implemented for state space models
handle_params(params[, transformed, ...])
Ensure model parameters satisfy shape and other requirements
hessian(params, *args, **kwargs)
Hessian matrix of the likelihood function, evaluated at the given parameters
impulse_responses(params[, steps, impulse, ...])
Impulse response function
information(params)
Fisher information matrix of model.
initialize()
Initialize the SARIMAX model.
initialize_approximate_diffuse([variance])
Initialize approximate diffuse
initialize_default([...])
Initialize default
initialize_known(initial_state, ...)
Initialize known
initialize_statespace(**kwargs)
Initialize the state space representation
initialize_stationary()
Initialize stationary
loglike(params, *args, **kwargs)
Loglikelihood evaluation
loglikeobs(params[, transformed, ...])
Loglikelihood evaluation
observed_information_matrix(params[, ...])
Observed information matrix
opg_information_matrix(params[, ...])
Outer product of gradients information matrix
predict(params[, exog])
After a model has been fit predict returns the fitted values.
prepare_data()
Prepare data for use in the state space representation
score(params, *args, **kwargs)
Compute the score function at params.
score_obs(params[, method, transformed, ...])
Compute the score per observation, evaluated at params
set_conserve_memory([conserve_memory])
Set the memory conservation method
set_filter_method([filter_method])
Set the filtering method
set_inversion_method([inversion_method])
Set the inversion method
set_smoother_output([smoother_output])
Set the smoother output
set_stability_method([stability_method])
Set the numerical stability method
simulate(params, nsimulations[, ...])
Simulate a new time series following the state space model
simulation_smoother([simulation_output])
Retrieve a simulation smoother for the state space model.
smooth(params[, transformed, ...])
Kalman smoothing
transform_jacobian(unconstrained[, ...])
Jacobian matrix for the parameter transformation function
transform_params(unconstrained)
Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation.
untransform_params(constrained)
Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer
update(params[, transformed, ...])
Update the parameters of the model
Properties
endog_names
Names of endogenous variables
exog_names
The names of the exogenous variables.
initial_design
Initial design matrix
initial_selection
Initial selection matrix
initial_state_intercept
Initial state intercept vector
initial_transition
Initial transition matrix
initial_variance
initialization
loglikelihood_burn
model_latex_names
The latex names of all possible model parameters.
model_names
The plain text names of all possible model parameters.
model_orders
The orders of each of the polynomials in the model.
param_names
List of human readable parameter names (for parameters actually included in the model).
param_terms
List of parameters actually included in the model, in sorted order.
params_complete
start_params
Starting parameters for maximum likelihood estimation
state_names
(list of str) List of human readable names for unobserved states.
tolerance