添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

摘要:

核酸基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization-time of flight mass spectrometry,MALDI-TOF MS)技术在结核病与非结核分枝杆菌病病原学和耐药性诊断中的应用越来越多,为早期诊断、鉴别诊断和耐药鉴定提供了快速、准确的依据。然而,在实际应用中,临床医生对标本的选择、留取、送检时机及注意事项、报告结果的解读等的理解和掌握参差不齐,尚需规范化。本共识总结了核酸MALDI-TOF MS检测技术应用于结核病和非结核分枝杆菌病诊断的临床适应证和标本采集注意事项,介绍了如何正确解读核酸MALDI-TOF MS技术鉴定分枝杆菌菌种和耐药性的报告结果,以进一步规范核酸MALDI-TOF MS技术在结核病和非结核分枝杆菌病诊断中的临床应用,提高临床诊断水平,指导临床开展早期精准有效的治疗。

总结性报告(主题)

Abstract:

Nucleic acid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique has been increasingly applied in the etiology and drug resistance diagnosis of tuberculosis and non-tuberculous mycobacteriosis, providing a rapid and accurate basis for early diagnosis, differential diagnosis, and drug resistance identification. However, it needs to be normalized that the clinician’s understanding and grasp of sample selection, retention, submitting time and precautions, and interpretation of report results. This consensus summarizes the clinical indications and specimen collection precautions of nucleic acid MALDI-TOF MS detection technique for the diagnosis of tuberculosis and non-tuberculous mycobacteriosis, and introduces how to correctly interpret the reported results of nucleic acid MALDI-TOF MS technique used to mycobacterial species and drug resistance. It has important significance to further standardize the clinical application of nucleic acid MALDI-TOF MS technique in the diagnosis of tuberculosis and non-tuberculous mycobacteriosis, improve the level of clinical diagnosis, and guide the early accurate and effective clinical treatment.

Key words: Nucleic acids, Mass spectrometry, Tuberculosis, Mycobacterium infections, Consensus development conferences as topic

中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会. 核酸基质辅助激光解吸电离飞行时间质谱技术在结核病和非结核分枝杆菌病诊断中的临床应用专家共识[J]. 中国防痨杂志, 2023, 45(6): 543-558. doi: 10.19982/j.issn.1000-6621.20230113

Senior Department of Tuberculosis, the th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Tuberculosis Control Branch of China Intrnational Exchange and Promotive Association for Medical and Health Care. Expert consensus on the clinical application of nucleic acid MALDI-TOF MS technique in the diagnosis of tuberculosis and non-tuberculosis mycobacteriosis[J]. Chinese Journal of Antituberculosis, 2023, 45(6): 543-558. doi: 10.19982/j.issn.1000-6621.20230113

分枝杆菌病原学及其耐药性检测常用分子诊断方法的比较

诊断方法 应用优势 应用局限
实时荧光定量PCR技术 可直接检测呼吸道样本,技术成熟,应用广泛,敏感度和特异度均较高 检测通量较低
恒温扩增技术 无需温度梯度循环,保持温度恒定,对设备要求不高。快速检测结核分枝杆菌,肉眼可观察 仅能进行病原学的鉴定,不能检测耐药性。高温、高湿、试剂不足和交叉污染会出现假阳性结果
基因芯片/线性探针技术 高通量,可一次完成菌种鉴定和多个耐药相关基因位点的检测。敏感度和特异度均较高 所需样本量大。检测的耐药位点有限;杂交、洗涤过程较繁琐、费时
基因测序技术 宏基因组测序可同时检测多种病原微生物,可检测到已知耐药位点以外的突变,可用于发现新的耐药机制。靶向测序技术可检测到所有的耐药相关基因的突变类型。一代测序常作为分子药物敏感性检测结果和表型药物敏感性检测结果不一致时的验证手段 靶向测序技术对样本、设备和结果解读的要求高。一代测序对异质性耐药的检测受限
核酸MALDI-TOF MS技术 高通量,可一次性覆盖所有一线药物和大部分常用二线药物的耐药基因位点,可很好区分结核分枝杆菌和非结核分枝杆菌,具有较高的灵活性。敏感度和特异度高。可检测混合感染、异质性耐药、同义突变 只能覆盖已知的耐药基因位点,依赖于耐药机制的发现

应用核酸MALDI-TOF MS技术鉴定的分枝杆菌菌种或亚种

序号 中文名称 拉丁文名称
结核分枝杆菌复合群
1 结核分枝杆菌 M.tuberculosis
2 牛分枝杆菌 M.bovis
3 牛分枝杆菌BCG M.bovis BCG
4 田鼠分枝杆菌 M.microti
5 非洲分枝杆菌 M.africanum
6 卡内蒂分枝杆菌 M.canetti
7 山羊分枝杆菌 M.caprae
8 海豹分枝杆菌 M.pinnipedii
非结核分枝杆菌
1 鸟分枝杆菌 M.avium
2 胞内分枝杆菌 M.intracellulare
3 莲建洞分枝杆菌 M.yongonense
4 脓肿分枝杆菌 M.abscessus
5 博莱分枝杆菌 M.bolletii
6 马赛分枝杆菌 M.massiliense
7 偶发分枝杆菌 M.fortuitum
8 堪萨斯分枝杆菌 M.kansasii
9 戈登分枝杆菌 M.gordonae
10 瘰疬分枝杆菌 M.scrofulaceum
11 龟分枝杆菌 M.chelonae
12 海分枝杆菌 M.marinum
13 蟾蜍分枝杆菌 M.xenopi
14 溃疡分枝杆菌 M.ulcerans
15 嗜血分枝杆菌 M.haemophilum
16 玛尔摩分枝杆菌 M.malmoense
17 耻垢分枝杆菌 M.smegmatis
18 苏尔加分枝杆菌 M.szulgai
19 不产色分枝杆菌 M.nonchromogenicum
20 次要分枝杆菌 M.triviale
21 土分枝杆菌 M.terrae
22 猪分枝杆菌 M.porcinum
23 浅黄分枝杆菌 M.gilvum
24 草分枝杆菌 M.phlei
25 胃分枝杆菌 M.gastri
26 母牛分枝杆菌 M.vaccae
27 迪氏分枝杆菌 M.diernhoferi
28 猿分枝杆菌 M.simiae
29 新金色分枝杆菌 M.neoaurum
30 金色分枝杆菌 M.aurum
31 居间分枝杆菌 M.interjectum
32 奇美拉分枝杆菌 M.chimaera
33 免疫原分枝杆菌 M.immunogenum
34 产黏液分枝杆菌 M.mucogenicum
35 外来分枝杆菌 M.peregrinum
36 三重分枝杆菌 M.triplex
37 布兰德分枝杆菌 M.branderi
38 慢生黄分枝杆菌 M.lentiflavum
39 副瘰疬分枝杆菌 M.parascrofulaceum
40 中间分枝杆菌 M.intermedium

应用核酸MALDI-TOF MS技术检测结核分枝杆菌耐药基因及耐药位点

药物名称 耐药基因 a 检测位点 密码子/碱基 编码氨基酸
利福平 rpoB a 511 CTG 亮氨酸(Leu)
513 CAA 谷氨酰胺(Gln)
516 GAC 天冬氨酸(Asp)
522 TCG 丝氨酸(Ser)
526 CAC 组氨酸(His)
531 TCG 丝氨酸(Ser)
533 CTG 亮氨酸(Leu)
572 ATC 异亮氨酸(Ile)
异烟肼 inhA -15 C /
katG 315 AGC 丝氨酸(Ser)
316 GGC 甘氨酸(Gly)
吡嗪酰胺 pncA 57 CAC 组氨酸(His)
-11 A /
乙胺丁醇 embB 306 ATG 蛋氨酸(Met)
406 GGC 甘氨酸(Gly)
氟喹诺酮类 gyrA 88 GGC 甘氨酸(Gly)
90 GCG 丙氨酸(Ala)
91 TCG 丝氨酸(Ser)
94 GAC 天冬氨酸(Asp)
gyrB 538 AAC 天冬酰胺(Asn)
链霉素 rpsL 43 AAG 赖氨酸(Lys)
88 AAG 赖氨酸(Lys)
乙硫异烟胺/丙硫异烟胺 inhA -15 C /
对氨基水杨酸钠 folC 43 ATC 异亮氨酸(Ile)
thyA 202 ACC 苏氨酸(Thr)
75 CAC 组氨酸(His)
阿米卡星 rrs 1401 A /
1484 G /
卡那霉素 eis -14 C /
rrs 1401 A /
1402 C /
1484 G /
卷曲霉素 rrs 1401 A /
1402 C /
1484 G /
环丝氨酸 alr 261 AGC 丝氨酸(Ser)
113 CTG 亮氨酸(Leu)
ald 32 GAA 谷氨酸(Glu)
氯法齐明 rv0678 193 G /
466 C /
贝达喹啉 rv0678 193 G /
466 C /
利奈唑胺 rplC 460 T /
Pang Y, An J, Shu W, et al. Epidemiology of Extrapulmonary Tuberculosis among Inpatients, China, 2008—2017. Emerg Infect Dis, 2019, 25(3): 457-464. doi:10.3201/eid2503.180572. doi: 10.3201/eid2503.180572 pmid: 30789144 Park M, Kon OM. Use of Xpert MTB/RIF and Xpert Ultra in extrapulmonary tuberculosis. Expert Rev Anti Infect Ther, 2021, 19(1): 65-77. doi:10.1080/14787210.2020.1810565. doi: 10.1080/14787210.2020.1810565 Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. Radiographics, 2019, 39(7): 2023-2037. doi:10.1148/rg.2019190109. doi: 10.1148/rg.2019190109 pmid: 31697616 Mazza-Stalder J, Nicod L, Janssens JP. Extrapulmonary tuberculosis. Rev Mal Respir, 2012, 29(4): 566-578. doi:10.1016/j.rmr.2011.05.021. doi: 10.1016/j.rmr.2011.05.021 pmid: 22542414 Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis, 2014, 18(11): 1370-1377. doi:10.5588/ijtld.14.0120. doi: 10.5588/ijtld.14.0120 pmid: 25299873 Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med, 2015, 36(1): 13-34. doi:10.1016/j.ccm.2014.10.002. doi: 10.1016/j.ccm.2014.10.002 pmid: 25676516 Baldwin SL, Larsen SE, Ordway D, et al. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis, 2019, 13(2): e0007083. doi:10.1371/journal.pntd.0007083. doi: 10.1371/journal.pntd.0007083 Adjemian J, Frankland TB, Daida YG, et al. Epidemiology of Nontuberculous Mycobacterial Lung Disease and Tuberculosis, Hawaii, USA. Emerg Infect Dis, 2017, 23(3): 439-447. doi:10.3201/eid2303.161827. doi: 10.3201/eid2303.161827 pmid: 28221128 Liu CF, Song YM, He WC, et al. Nontuberculous mycobacteria in China: incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty, 2021, 10(1): 59. doi:10.1186/s40249-021-00844-1. doi: 10.1186/s40249-021-00844-1 Wang X, Li H, Jiang G, et al. Prevalence and drug resistance of nontuberculous mycobacteria, northern China, 2008—2011. Emerg Infect Dis, 2014, 20(7): 1252-1253. doi:10.3201/eid2007.131801. doi: 10.3201/eid2007.131801 Tan Y, Su B, Shu W, et al. Epidemiology of pulmonary di-sease due to nontuberculous mycobacteria in Southern China, 2013—2016. BMC Pulm Med, 2018, 18(1): 168. doi:10.1186/s12890-018-0728-z. doi: 10.1186/s12890-018-0728-z 缪青, 姚雨濛, 潘珏, 等. 宏基因二代测序技术对非结核分枝杆菌感染病原学诊断的价值. 中国临床医学, 2020, 27(4): 559-562. doi:10.12025/j.issn.1008-6358.2020.20201289. doi: 10.12025/j.issn.1008-6358.2020.20201289 全国第五次结核病流行病学抽样调查技术指导组, 全国第五次结核病流行病学抽样调查办公室. 2010年全国第五次结核病流行病学抽样调查报告. 中国防痨杂志, 2012, 34 (8): 485-508. Zhou L, Xu D, Liu H, et al. Trends in the Prevalence and Antibiotic Resistance of Non-tuberculous Mycobacteria in Mainland China, 2000—2019: Systematic Review and Meta-Analysis. Front Public Health, 2020, 8: 295. doi:10.3389/fpubh.2020.00295. doi: 10.3389/fpubh.2020.00295 pmid: 32850570 Nishiuchi Y, Iwamoto T, Maruyama F. Infection Sources of a Common Non-tuberculous Mycobacterial Pathogen, Mycobacterium avium Complex. Front Med (Lausanne), 2017, 4: 27. doi:10.3389/fmed.2017.00027. doi: 10.3389/fmed.2017.00027 Tan Y, Deng Y, Yan X, et al. Nontuberculous mycobacterial pulmonary disease and associated risk factors in China: A prospective surveillance study. J Infect, 2021, 83(1): 46-53. doi:10.1016/j.jinf.2021.05.019. doi: 10.1016/j.jinf.2021.05.019 pmid: 34048821 McShane PJ, Glassroth J. Pulmonary Disease Due to Nontuberculous Mycobacteria: Current State and New Insights. Chest, 2015, 148(6): 1517-1527. doi:10.1378/chest.15-0458. doi: S0012-3692(15)50117-7 pmid: 26225805 Boyle DP, Zembower TR, Qi C. Relapse versus Reinfection of Mycobacterium avium Complex Pulmonary Disease. Patient Characteristics and Macrolide Susceptibility. Ann Am Thorac Soc, 2016, 13(11): 1956-1961. doi:10.1513/AnnalsATS.201605-344BC. doi: 10.1513/AnnalsATS.201605-344BC Koh WJ, Moon SM, Kim SY, et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J, 2017, 50(3): 1602503. doi:10.1183/13993003.02503-2016. doi: 10.1183/13993003.02503-2016 Gopalaswamy R, Shanmugam S, Mondal R, et al. Of tuberculosis and non-tuberculous mycobacterial infections-a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci, 2020, 27(1): 74. doi:10.1186/s12929-020-00667-6. doi: 10.1186/s12929-020-00667-6 pmid: 32552732 Lavigne JP, Espinal P, Dunyach-Remy C, et al. Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med, 2013, 51(2): 257-270. doi:10.1515/cclm-2012-0291. doi: 10.1515/cclm-2012-0291 Holland RD, Wilkes JG, Rafii F, et al. Rapid identification of intact whole bacteria based on spectral patterns using matri-xassisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 1996, 10(10): 1227-1232. doi:10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6. doi: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6 胡继红, 马筱玲, 王辉, 等. MALDI-TOF MS在临床微生物鉴定中的标准化操作专家共识. 中华检验医学杂志, 2019, 42(4): 241-249. doi:10.3760/cma.j.issn.1009-8158.2019.04.004. doi: 10.3760/cma.j.issn.1009-8158.2019.04.004 高晶晶, 王亚南, 杨艺, 等. MALDI-TOF MS技术在快速鉴别肺炎链球菌与口腔/缓症链球菌中的应用. 中华检验医学杂志, 2018, 41(5): 405-407. doi:10.3760/cma.j.issn.1009-9158.2018.05.016. doi: 10.3760/cma.j.issn.1009-9158.2018.05.016 胡燕燕, 蔡加昌, 周宏伟, 等. 基质辅助激光解吸/电离飞行时间质谱仪快速鉴别甲氧西林耐药和甲氧西林敏感金黄色葡萄球菌的研究. 中华微生物学和免疫学杂志, 2015, 35(1): 42-45. doi:10.3760/cma.j.issn.0254-5101.2015.01.009. doi: 10.3760/cma.j.issn.0254-5101.2015.01.009 Chen XF, Hou X, Xiao M, et al. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms, 2021, 9(7): 1536. doi:10.3390/microorganisms9071536. doi: 10.3390/microorganisms9071536 Alcaide F, Amlerová J, Bou G, et al. How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect, 2018, 24(6): 599-603. doi:10.1016/j.cmi.2017.11.012. doi: 10.1016/j.cmi.2017.11.012 Genc GE, Demir M, Yaman G, et al. Evaluation of MALDI-TOF MS for identification of nontuberculous mycobacteria isolated from clinical specimens in mycobacteria growth indicator tube medium. New Microbiol, 2018, 41(3): 214-219. pmid: 29874386 Mediavilla-Gradolph MC, De Toro-Peinado I, Bermúdez-Ruiz MP, et al. Use of MALDI-TOF MS for Identification of Nontuberculous Mycobacterium Species Isolated from Clinical Specimens. Biomed Res Int, 2015, 2015: 854078. doi:10.1155/2015/854078. doi: 10.1155/2015/854078 Neuschlova M, Vladarova M, Kompanikova J, et al. Identification of Mycobacterium Species by MALDI-TOF Mass Spectrometry. Adv Exp Med Biol, 2017, 1021: 37-42. doi:10.1007/5584_2017_26. doi: 10.1007/5584_2017_26 pmid: 28623484 Rodríguez-Sánchez B, Ruiz-Serrano MJ, Marín M, et al. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nontuberculous Mycobacteria from Clinical Isolates. J Clin Microbiol, 2015, 53(8): 2737-2740. doi:10.1128/JCM.01380-15. doi: 10.1128/JCM.01380-15 pmid: 26063855 Su KY, Yan BS, Chiu HC, et al. Rapid Sputum Multiplex Detection of the M.tuberculosis Complex (MTBC) and Resis-tance Mutations for Eight Antibiotics by Nucleotide MALDI-TOF MS. Sci Rep, 2017, 7: 41486. doi:10.1038/srep41486. doi: 10.1038/srep41486 Nyasinga J, Kyany’a C, Okoth R, et al. A six-member SNP assay on the iPlex MassARRAY platform provides a rapid and affordable alternative for typing major African Staphylococcus aureus types. Access Microbiol, 2019, 1(3): e000018. doi:10.1099/acmi.0.000018. doi: 10.1099/acmi.0.000018 Wu X, Tan G, Yang J, et al. Prediction of Mycobacterium tuberculosis drug resistance by nucleotide MALDI-TOF-MS. Int J Infect Dis, 2022, 121: 47-54. doi:10.1016/j.ijid.2022.04.061. doi: 10.1016/j.ijid.2022.04.061 Shi J, He G, Ning H, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis (Edinb), 2022, 135: 102209. doi:10.1016/j.tube.2022.102209. doi: 10.1016/j.tube.2022.102209 侯婧, 王华, 刘盛盛. 基质辅助激光解吸电离飞行时间质谱技术检测支气管肺泡灌洗液对涂阴或无痰肺结核的诊断价值. 实用医学杂志, 2022, 38(13): 1599-1603. doi:10.3969/j.issn.1006-5725.2022.13.006. doi: 10.3969/j.issn.1006-5725.2022.13.006 Yang H, Li A, Dang L, et al. A rapid, accurate, and low-cost method for detecting Mycobacterium tuberculosis and its drug-resistant genes in pulmonary tuberculosis: Applications of MassARRAY DNA mass spectrometry. Front Microbiol, 2023, 14: 1093745. doi:10.3389/fmicb.2023.1093745. doi: 10.3389/fmicb.2023.1093745 World Health Organization. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide. Geneva: World Health Organization, 2018. World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021. Liu D, Huang F, Zhang G, et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect, 2022, 28(5): 731. e9-731.e15. doi:10.1016/j.cmi.2021.09.014. doi: 10.1016/j.cmi.2021.09.014 Wang G, Jiang G, Jing W, et al. Prevalence and molecular characterizations of seven additional drug resistance among multidrug-resistant tuberculosis in China: A subsequent study of a national survey. J Infect, 2021, 82(3): 371-377. doi:10.1016/j.jinf.2021.02.004. doi: 10.1016/j.jinf.2021.02.004 pmid: 33556430 Pantel A, Petrella S, Veziris N, et al. Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M.tuberculosis . Antimicrob Agents Chemother, 2012, 56(4):1990-1996. doi:10.1128/AAC.06272-11. doi: 10.1128/AAC.06272-11 pmid: 22290942 中华人民共和国国务院. 病原微生物实验室生物安全管理条例. 国务院令第424号. 2004-11-12. 中华人民共和国卫生部. 可感染人类的高致病性病原微生物菌(毒)种或样本运输管理规定. 卫生部令第45号. 2008-11-26. 中华人民共和国国际民用航空组织. 危险物品安全航空运输技术细则(2011—2012年版). 2011-01-01. 中华人民共和国卫生部. 医疗机构临床实验室管理办法. 卫医发〔2006〕73号. 2006-02-27. 中华人民共和国国家卫生和计划生育委员会. 医学检验实验室基本标准和管理规范(试行). 国卫医发〔2016〕37号. 2016-07-20. 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007, 175(4): 367-416. doi:10.1164/rccm.200604-571ST. doi: 10.1164/rccm.200604-571ST 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11): 918-946. doi:10.3760/cma.j.cn112147-20200508-00570. doi: 10.3760/cma.j.cn112147-20200508-00570 Hameed HMA, Fang C, Liu Z, et al. Characterization of Genetic Variants Associated with Rifampicin Resistance Level in Mycobacterium tuberculosis Clinical Isolates Collected in Guangzhou Chest Hospital, China. Infect Drug Resist, 2022, 15: 5655-5666. doi:10.2147/IDR.S375869. doi: 10.2147/IDR.S375869 pmid: 36193294 Mon AS, Ei PW, Htwe MM, et al. First Detection of Mycobacterium tuberculosis Clinical Isolates Harboring I491F Borderline Resistance rpoB Mutation in Myanmar. Antimicrob Agents Chemother, 2022, 66(12): e0092522. doi:10.1128/aac.00925-22. doi: 10.1128/aac.00925-22 Krittanan P, Srimanote P, Thawornwan U, et al. Spoligotype-based population structure and isoniazid-resistance gene mutation of Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist, 2022, 30:319-325. doi:10.1016/j.jgar.2022.06.013. doi: 10.1016/j.jgar.2022.06.013 pmid: 35732265 Kiepiela P, Bishop KS, Smith AN, et al. Genomic mutations in the katG , inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa. Tuber Lung Dis, 2000, 80(1): 47-56. doi:10.1054/tuld.1999.0231. doi: 10.1054/tuld.1999.0231 CRyPTIC Consortium. Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M.tuberculosis . Eur Respir J, 2022, 60(4): 2200239. doi:10.1183/13993003.00239-2022. doi: 10.1183/13993003.00239-2022 Pinhata JMW, Brandao AP, Mendes FF, et al. Correlating genetic mutations with isoniazid phenotypic levels of resistance in Mycobacterium tuberculosis isolates from patients with drug-resistant tuberculosis in a high burden setting. Eur J Clin Microbiol Infect Dis, 2021, 40(12): 2551-2561. doi:10.1007/s10096-021-04316-0. doi: 10.1007/s10096-021-04316-0 Madison B, Robinson-Dunn B, George I, et al. Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods. J Clin Microbiol, 2002, 40(11): 3976-3979. doi:10.1128/JCM.40.11.3976-3979.2002. doi: 10.1128/JCM.40.11.3976-3979.2002 pmid: 12409361 Puyén ZM, Santos-Lázaro D, Vigo AN, et al. Evaluation of the broth microdilution plate methodology for susceptibility testing of Mycobacterium tuberculosis in Peru. BMC Infect Dis, 2022, 22(1): 705. doi:10.1186/s12879-022-07677-9. doi: 10.1186/s12879-022-07677-9 World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. 王玉峰, 逄宇. 世界卫生组织《结核分枝杆菌耐药相关基因突变目录及其临床应用指南》解读. 中国临床新医学, 2022, 15(10): 900-906. doi:10.3969/j.issn.1674-3806.2022.10.03. doi: 10.3969/j.issn.1674-3806.2022.10.03 Maitre T, Petitjean G, Chauffour A, et al. Are moxifloxacin and levofloxacin equally effective to treat XDR tuberculosis? J Antimicrob Chemother, 2017, 72(8): 2326-2333. doi:10.1093/jac/dkx150. doi: 10.1093/jac/dkx150 pmid: 28535203 Seifert M, Capparelli E, Catanzaro DG, et al. Using Mycobacterium tuberculosis Single-Nucleotide Polymorphisms To Predict Fluoroquinolone Treatment Response. Antimicrob Agents Chemother, 2019, 63(7): e00076-19. doi:10.1128/AAC.00076-19. doi: 10.1128/AAC.00076-19 Morlock GP, Metchock B, Sikes D, et al. ethA , inhA , and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother, 2003, 47(12): 3799-3805. doi:10.1128/AAC.47.12.3799-3805.2003. doi: 10.1128/AAC.47.12.3799-3805.2003 pmid: 14638486 Brankin A, Seifert M, Georghiou SB, et al. In silico evaluation of WHO-endorsed molecular methods to detect drug resistant tuberculosis. Sci Rep, 2022, 12(1): 17741. doi:10.1038/s41598-022-21025-6. doi: 10.1038/s41598-022-21025-6 pmid: 36273016 He W, Liu C, Liu D, et al. Prevalence of Mycobacterium tuberculosis resistant to bedaquiline and delamanid in China. J Glob Antimicrob Resist, 2021, 26: 241-248. doi:10.1016/j.jgar.2021.06.007. doi: 10.1016/j.jgar.2021.06.007 Hu Y, Fan J, Zhu D, et al. Investigation of bedaquiline resis-tance and genetic mutations in multi-drug resistant Mycobacterium tuberculosis clinical isolates in Chongqing, China. Ann Clin Microbiol Antimicrob, 2023, 22(1): 19. doi:10.1186/s12941-023-00568-0. doi: 10.1186/s12941-023-00568-0 Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis . J Antimicrob Chemother, 2015, 70(9): 2507-2510. doi:10.1093/jac/dkv150. doi: 10.1093/jac/dkv150 pmid: 26045528 Traoré AN, Rikhotso MC, Banda NT, et al. Effectiveness of the Novel Anti-TB Bedaquiline against Drug-Resistant TB in Africa: A Systematic Review of the Literature. Pathogens, 2022, 11(6): 636. doi:10.3390/pathogens11060636. doi: 10.3390/pathogens11060636 Kabahita JM, Kabugo J, Kakooza F, et al. First report of whole-genome analysis of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate with bedaquiline, linezolid and clofazimine resistance from Uganda. Antimicrob Resist Infect Control, 2022, 11(1): 68. doi:10.1186/s13756-022-01101-2. doi: 10.1186/s13756-022-01101-2 Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8): 2031-2043. doi:10.1093/jac/dkaa136. doi: 10.1093/jac/dkaa136 pmid: 32361756 Li Z, Liu F, Chen H, et al. A five-year review of prevalence and treatment outcomes of pre-extensively drug-resistant plus additional drug-resistant tuberculosis in the Henan Provincial Tuberculosis Clinical Medicine Research Centre. J Glob Antimicrob Resist, 2022, 31:328-336. doi:10.1016/j.jgar.2022.09.010. doi: 10.1016/j.jgar.2022.09.010 pmid: 36210030 Wu X, Shang Y, Ren W, et al. Minimum inhibitory concentration of cycloserine against Mycobacterium tuberculosis using the MGIT 960 system and a proposed critical concentration. Int J Infect Dis, 2022, 121: 148-151. doi:10.1016/j.ijid.2022.05.030. doi: 10.1016/j.ijid.2022.05.030 Zhang X, Liu L, Zhang Y, et al. Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother, 2015, 59(2): 1320-1324. doi:10.1128/AAC.03695-14. doi: 10.1128/AAC.03695-14 pmid: 25421465 Wang W, Li S, Ge Q, et al. Determination of critical concentration for drug susceptibility testing of Mycobacterium tuberculosis against para-aminosalicylic acid with clinical isolates with thyA , folC and dfrA mutations. Ann Clin Microbiol Antimicrob, 2022, 21(1): 48. doi:10.1186/s12941-022-00537-z. doi: 10.1186/s12941-022-00537-z Bastian S, Veziris N, Roux AL, et al. Assessment of clari-thromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm (41) and rrl sequencing. Antimicrob Agents Chemother, 2011, 55(2): 775-781. doi:10.1128/AAC.00861-10. doi: 10.1128/AAC.00861-10 Wallace RJ Jr, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus . Antimicrob Agents Chemother, 1996, 40(7): 1676-1681. doi:10.1128/AAC.40.7.1676. doi: 10.1128/AAC.40.7.1676 pmid: 8807061 Rubio M, March F, Garrigó M, et al. Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Complex. PLoS One, 2015, 10(10): e0140166. doi:10.1371/journal.pone.0140166. doi: 10.1371/journal.pone.0140166 Huh HJ, Kim SY, Jhun BW, et al. Recent advances in molecular diagnostics and understanding mechanisms of drug resis-tance in nontuberculous mycobacterial diseases. Infect Genet Evol, 2019, 72: 169-182. doi:10.1016/j.meegid.2018.10.003. doi: 10.1016/j.meegid.2018.10.003 Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol, 2022, 20(9):529-541. doi:10.1038/s41579-022-00721-0. doi: 10.1038/s41579-022-00721-0 pmid: 35365812 Operario DJ, Koeppel AF, Turner SD, et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS One, 2017, 12(5): e0176522. doi:10.1371/journal.pone.0176522. doi: 10.1371/journal.pone.0176522 Folkvardsen DB, Thomsen VØ, Rigouts L, et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J Clin Microbiol, 2013, 51(12): 4220-4222. doi:10.1128/JCM.01602-13. doi: 10.1128/JCM.01602-13 pmid: 24068005 Werngren J, Mansjö M, Glader M, et al. Detection of Pyrazinamide Heteroresistance in Mycobacterium tuberculosis . Antimicrob Agents Chemother, 2021, 65(9): e0072021. doi:10.1128/AAC.00720-21. doi: 10.1128/AAC.00720-21 Zhang X, Zhao B, Liu L, et al. Subpopulation analysis of heteroresistance to fluoroquinolone in Mycobacterium tuberculosis isolates from Beijing, China. J Clin Microbiol, 2012, 50(4): 1471-1474. doi:10.1128/JCM.05793-11. doi: 10.1128/JCM.05793-11 Liang B, Tan Y, Li Z, et al. Highly Sensitive Detection of Isoniazid Heteroresistance in Mycobacterium tuberculosis by DeepMelt Assay. J Clin Microbiol, 2018, 56(2): e01239-17. doi:10.1128/JCM.01239-17. doi: 10.1128/JCM.01239-17 Zhang X, Zhao B, Huang H, et al. Co-occurrence of amikacin-resistant and -susceptible Mycobacterium tuberculosis isolates in clinical samples from Beijing, China. J Antimicrob Chemother, 2013, 68(7): 1537-1542. doi:10.1093/jac/dkt082. doi: 10.1093/jac/dkt082 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会. 浅表淋巴结结核的诊断与治疗专家共识 [J]. 中国防痨杂志, 2023, 45(6): 531-542. 宋媛媛, 夏辉. 全国结核病实验室网络室间质量评价满意度调查 [J]. 中国防痨杂志, 2023, 45(6): 559-565. 何萍, 王怡婷, 宋泽萱, 夏辉, 王胜芬, 贺文从, 郑扬, 赵雁林. 结核分枝杆菌 Rv2333c 在巨噬细胞内功能的初步研究 [J]. 中国防痨杂志, 2023, 45(6): 566-574. 尚耀民, 周晓蕾, 薛运玲, 冷霞. 微卡与维生素D联合应用对初治涂阳肺结核CD4 + T细胞亚群平衡的影响 [J]. 中国防痨杂志, 2023, 45(6): 575-582. 王嫩寒, 田丽丽, 陈双双, 赵琰枫, 樊瑞芳, 陈昊, 任怡宣, 张洁, 易俊莉, 杨新宇, 于兰, 丁北川, 李传友, 代小伟. 荧光PCR探针熔解曲线技术检测痰标本结核分枝杆菌利福平耐药性的研究 [J]. 中国防痨杂志, 2023, 45(6): 583-588. 张治国, 尚媛媛, 张旭霞, 刘荣梅, 马丽萍, 秦林, 孔忠顺, 任卫聪. CRISPR-Cas13a检测在肺结核诊断中的价值 [J]. 中国防痨杂志, 2023, 45(6): 589-593. 杨超, 王晶, 唐桂林, 耿洋. 2012—2021年北京市通州区流动人口肺结核流行特征及治疗转归分析 [J]. 中国防痨杂志, 2023, 45(6): 594-600. 彭孝旺, 樊晓蕾, 向阳, 买吾拉江·依马木, 胡鹏远, 王艳杰, 腾子豪. 新疆维吾尔自治区喀什地区活动性肺结核密切接触者发病及影响因素分析 [J]. 中国防痨杂志, 2023, 45(6): 601-606. 王泊宁, 李涛, 陈伟. 耐药结核病经济负担研究进展 [J]. 中国防痨杂志, 2023, 45(6): 607-612. 董静, 史雨婷, 潘丽萍, 张宗德. 长链非编码RNA抗结核分枝杆菌感染功能的研究进展 [J]. 中国防痨杂志, 2023, 45(6): 613-619. 温立旻, 侯代伦. 肺结核合并肺癌影像学评估方法现状及进展 [J]. 中国防痨杂志, 2023, 45(6): 620-624. 薛人伟, 蒋慧芳, 陶叠宏, 蒋玉霞, 吴海英. 多发性骨髓瘤CAR-T细胞治疗后并发肺结核一例 [J]. 中国防痨杂志, 2023, 45(6): 625-627. 廖艺璇, 方创森, 李燕明. 加强结核病非定点医疗机构能力建设提高结核病诊断水平 [J]. 中国防痨杂志, 2023, 45(5): 437-441. 王大宽, 张彬, 刘自森, 段伟焘, 高磊. 基层结核病预防性治疗门诊建设的探索与展望 [J]. 中国防痨杂志, 2023, 45(5): 442-445. 李姗姗, 王玉峰, 舒薇, 逄宇. 结核病实验室诊断技术研发新进展 [J]. 中国防痨杂志, 2023, 45(5): 446-453.