Mysql锁
# 共享锁与排他锁
- 共享锁(读锁):其他事务可以读,但不能写。
- 排他锁(写锁) :其他事务不能读取,也不能写。
# 锁粒度
- MyISAM 和 MEMORY 存储引擎采用的是表级锁(table-level locking)
- InnoDB 存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认情况下是采用行级锁。
- BDB 存储引擎采用的是页面锁(page-level locking),但也支持表级锁
- 默认情况下,表锁和行锁都是自动获得的, 不需要额外的命令
- 但是在有的情况下, 用户需要明确地进行锁表或者进行事务的控制, 以便确保整个事务的完整性,这样就需要使用事务控制和锁定语句来完成。
# 1. 表级锁
开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。
- 这些存储引擎通过总是 一次性同时获取所有需要的锁以及总是按相同的顺序获取表锁 来避免死锁。
- 表级锁更适合于以查询为主,并发用户少,只有少量按索引条件更新数据的应用,如Web 应用
# 2. 行级锁
开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
- 最大程度的支持并发,同时也带来了最大的锁开销。
- 在 InnoDB 中,除单个 SQL 组成的事务外,锁是逐步获得的,这就决定了在 InnoDB 中发生死锁是可能的。
- 行级锁只在存储引擎层实现,而Mysql服务器层没有实现。 行级锁更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统
# InnoDB锁模式
-
InnoDB 实现了以下两种类型的 行锁 :
- 共享锁(S) :允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
- 排他锁(X) :允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。
-
锁模式兼容情况
# 1. 加锁方式
-
对于 UPDATE、 DELETE 和 INSERT 语句, InnoDB会自动给涉及数据集加排他锁(X);
-
对于普通 SELECT 语句,InnoDB 不会加任何锁;
-
事务可以通过以下语句显式给记录集加共享锁或排他锁:
-
- 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE。 其他 session 仍然可以查询记录,并也可以对该记录加 share mode 的共享锁。但是如果当前事务需要对该记录进行更新操作,则很有可能造成死锁。
- 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE。其他 session 可以查询该记录,但是不能对该记录加共享锁或排他锁,而是等待获得锁
# 1.1. 隐式锁定
-
InnoDB在事务执行过程中,使用两阶段锁协议:
- 随时都可以执行锁定,InnoDB会根据隔离级别在需要的时候自动加锁;
- 锁只有在执行commit或者rollback的时候才会释放,并且所有的锁都是在 同一时刻 被释放。
# 1.2. 显示锁定
select ... lock in share mode //共享锁
select ... for update //排他锁
2
-
select for update:
-
在执行这个 select 查询语句的时候,会将对应的索引访问条目进行上排他锁(X 锁),也就是说这个语句对应的锁就相当于update带来的效果。
-
select ... for update 的使用场景:为了让自己查到的数据确保是最新数据,并且查到后的数据只允许自己来修改的时候,需要用到 for update 子句。
-
-
select lock in share mode :
- in share mode 子句的作用就是将查找到的数据加上一个 share 锁,这个就是表示其他的事务只能对这些数据进行简单的select 操作,并不能够进行 DML 操作。
- select ... lock in share mode 使用场景:为了确保自己查到的数据没有被其他的事务正在修改,也就是说确保查到的数据是最新的数据,并且不允许其他人来修改数据。但是自己不一定能够修改数据,因为有可能其他的事务也对这些数据 使用了 in share mode 的方式上了 S 锁。
-
for update 和 lock in share mode 的区别:
- 前一个上的是排他锁(X 锁),一旦一个事务获取了这个锁,其他的事务是没法在这些数据上执行 for update ;后一个是共享锁,多个事务可以同时的对相同数据执行 lock in share mode。
-
性能影响:
- select for update 语句,相当于一个 update 语句。在业务繁忙的情况下,如果事务没有及时的commit或者rollback 可能会造成其他事务长时间的等待,从而影响数据库的并发使用效率。
- select lock in share mode 语句是一个给查找的数据上一个共享锁(S 锁)的功能,它允许其他的事务也对该数据上S锁,但是不能够允许对该数据进行修改。如果不及时的commit 或者rollback 也可能会造成大量的事务等待。
# InnoDB的间隙锁
-
当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。
-
在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。
-
InnoDB使用间隙锁的目的
-
防止幻读,以满足相关隔离级别的要求;
-
满足恢复和复制的需要:
-
MySQL 通过 BINLOG 录入执行成功的 INSERT、UPDATE、DELETE 等更新数据的 SQL 语句,并由此实现 MySQL 数据库的恢复和主从复制。MySQL 的恢复机制(复制其实就是在 Slave Mysql 不断做基于 BINLOG 的恢复)有以下特点:
- 一是 MySQL 的恢复是 SQL 语句级的,也就是重新执行 BINLOG 中的 SQL 语句。 2. 是 MySQL 的 Binlog 是按照事务提交的先后顺序记录的, 恢复也是按这个顺序进行的。
- 由此可见,MySQL 的恢复机制要求:在一个事务未提交前,其他并发事务不能插入满足其锁定条件的任何记录,也就是不允许出现幻读。
-
MySQL 通过 BINLOG 录入执行成功的 INSERT、UPDATE、DELETE 等更新数据的 SQL 语句,并由此实现 MySQL 数据库的恢复和主从复制。MySQL 的恢复机制(复制其实就是在 Slave Mysql 不断做基于 BINLOG 的恢复)有以下特点:
-
# 获取 InnoDB 行锁争用情况
-
通过
show status like 'innodb_row_lock%'
状态变量来分析系统上的行锁的争夺情况mysql> show status like 'innodb_row_lock%'; +-------------------------------+-------+ | Variable_name | Value | +-------------------------------+-------+ | InnoDB_row_lock_current_waits | 0 | | InnoDB_row_lock_time | 0 | | InnoDB_row_lock_time_avg | 0 | | InnoDB_row_lock_time_max | 0 | | InnoDB_row_lock_waits | 0 | +-------------------------------+-------+ 5 rows in set (0.01 sec)
1
2
3
4
5
6
7
8
9
10
11
# 死锁(Deadlock Free)
-
死锁产生:
-
- 死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方占用的资源,从而导致恶性循环。
- 当事务试图以不同的顺序锁定资源时,就可能产生死锁。多个事务同时锁定同一个资源时也可能会产生死锁。
- 锁的行为和顺序和存储引擎相关。以同样的顺序执行语句,有些存储引擎会产生死锁有些不会——死锁有双重原因:真正的数据冲突;存储引擎的实现方式。
-
**检测死锁:**数据库系统实现了各种死锁检测和死锁超时的机制。InnoDB存储引擎能检测到死锁的循环依赖并立即返回一个错误。
-
**死锁恢复:**死锁发生以后,只有部分或完全回滚其中一个事务,才能打破死锁,InnoDB目前处理死锁的方法是,将持有最少行级排他锁的事务进行回滚。所以事务型应用程序在设计时必须考虑如何处理死锁,多数情况下只需要重新执行因死锁回滚的事务即可。
-
**外部锁的死锁检测:**发生死锁后,InnoDB 一般都能自动检测到,并使一个事务释放锁并回退,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及表锁的情况下,InnoDB 并不能完全自动检测到死锁, 这需要通过设置锁等待超时参数
innodb_lock_wait_timeout
来解决 -
**死锁影响性能:**死锁会影响性能而不是会产生严重错误,因为InnoDB会自动检测死锁状况并回滚其中一个受影响的事务。在高并发系统上,当许多线程等待同一个锁时,死锁检测可能导致速度变慢。 有时当发生死锁时,禁用死锁检测(使用
innodb_deadlock_detect
配置选项)可能会更有效,这时可以依赖innodb_lock_wait_timeout
设置进行事务回滚。
# InnoDB避免死锁
如果出现死锁,可以用
SHOW INNODB STATUS
命令来确定最后一个死锁产生的原因。返回结果中包括死锁相关事务的详细信息,如引发死锁的 SQL 语句,事务已经获得的锁,正在等待什么锁,以及被回滚的事务等。据此可以分析死锁产生的原因和改进措施。
-
为了在单个InnoDB表上执行多个并发写入操作时避免死锁,可以在事务开始时通过为预期要修改的每个元祖(行)使用
SELECT ... FOR UPDATE
语句来获取必要的锁,即使这些行的更改语句是在之后才执行的。 - 在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁、更新时再申请排他锁,因为这时候当用户再申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁
- 如果事务需要修改或锁定多个表,则应在每个事务中以相同的顺序使用加锁语句。 在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会
-
通过
SELECT ... LOCK IN SHARE MODE
获取行的读锁后,如果当前事务再需要对该记录进行更新操作,则很有可能造成死锁。 - 改变事务隔离级别
# 优化锁性能的建议
- 尽量使用较低的隔离级别;
- 精心设计索引, 并尽量使用索引访问数据, 使加锁更精确, 从而减少锁冲突的机会
- 选择合理的事务大小,小事务发生锁冲突的几率也更小
- 给记录集显示加锁时,最好一次性请求足够级别的锁。比如要修改数据的话,最好直接申请排他锁,而不是先申请共享锁,修改时再请求排他锁,这样容易产生死锁
- 不同的程序访问一组表时,应尽量约定以相同的顺序访问各表,对一个表而言,尽可能以固定的顺序存取表中的行。这样可以大大减少死锁的机会
- 尽量用相等条件访问数据,这样可以避免间隙锁对并发插入的影响
- 不要申请超过实际需要的锁级别
- 除非必须,查询时不要显示加锁。 MySQL的MVCC可以实现事务中的查询不用加锁,优化事务性能;MVCC只在COMMITTED READ(读提交)和REPEATABLE READ(可重复读)两种隔离级别下工作
- 对于一些特定的事务,可以使用表锁来提高处理速度或减少死锁的可能
# 乐观锁、悲观锁
-
乐观锁(Optimistic Lock) :假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。 乐观锁不能解决脏读的问题。
- 乐观锁, 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。
-
悲观锁(Pessimistic Lock) :假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。
- 悲观锁,顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。