添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
Do Bacteria Have the Transcription Factors? The Formation and Development of the Concept of “Transcription Factor” YANG Ke-Gong * Department of Biochemistry and Molecular Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China 摘要 围绕“细菌是否有转录因子(transcription factors, TFs)”这个问题,近20多年来在国内外学术界存在明显分歧。传统观点认为,细菌没有TFs,调节细菌基因转录起始的是转录激活蛋白和阻遏蛋白,TFs仅仅结合于真核基因启动子。这种观点的典型代表是某些国际学术权威主编的生物化学和分子生物学类主流原版教材。然而,新观点认为,细菌的结合DNA的转录激活蛋白和阻遏蛋白就是TFs,其含量和重要性不亚于真核。虽然新观点在国际学术期刊发表的学术论文中早已司空见惯,但迄今国内外许多学者仍然心存疑虑。“转录因子”这一概念像许多分子生物学术语一样,伴随学科发展不断更新,从狭义到广义。初期人们曾以为TFs仅仅是真核基因转录起始所必需的,细菌不需要TFs,当时将细菌排除在其适用范围以外可以理解。40年来丰富的科研成果已经证明,大量的转录激活蛋白和阻遏蛋白结合于启动子以外的顺式调控元件,其中既包括真核生物的增强子、沉默子和绝缘子,也有细菌的多种正、负调控元件,这些转录调节蛋白符合转录因子的所有基本特征,是名副其实的“转录因子”。所以,新观点具有科学性和合理性,应该为学术界广泛接受和采用。将来“转录因子”的概念是否会进一步扩大,纳入HAT等染色质修饰蛋白和ncRNAs,甚至拓展到转录的“延伸因子”和“终止因子”,我们对此应该秉持开放态度。 Abstract :Over the past 20 years, there have been substantial divergences in academia around the world on the issue of whether bacteria have transcription factors (TFs). The traditional view is that bacteria do not have TFs, and their transcriptional activators and/or repressors regulate the transcription initiation, and TFs only bind to eukaryotic promoters. The typical representative of the traditional view is the mainstream international textbooks of Biochemistry and Molecular biology edited by some academic authorities. However, the new idea is that DNA binding transcriptional activators and repressors in bacteria are TFs, and the content and importance of which are no less than those of eukaryotes. Although the new idea has long been common in academic papers published in international academic journals, many scholars still have doubts. The concept of "transcription factor", like many terms of molecular biology, is constantly updated with the development of sciences, from narrowly-defined sense to broadly-defined sense. In the beginning, people thought that TFs were only necessary for the transcription initiation of eukaryotic genes, and bacteria did not need TFs. It was understandable that bacteria were excluded from the TFs' scope of application at that time. The rich scientific research achievements in the past 40 years have proved that a large number of transcriptional activators and repressors bind to cis -regulatory elements other than promoters, including enhancers, silencers, and insulators in eukaryotes, as well as a variety of positive and negative regulatory elements in bacteria. These transcriptional regulatory proteins conform to all the basic characteristics of TFs, which make them worthy of the name "transcription factors". Therefore, the new idea is scientific, reasonable, and should be widely accepted and adopted by the academic community. In the future, whether the concept of "transcription factor" will be further expanded to chromatin-modifying proteins such as histone acetyltransferase (HAT) and ncRNAs, and even to "elongation factors" and "termination factors" of transcription, we should be open to this issue. Key words transcription factors(TFs) bacteria academic debate [1] Latchman DS. Transcription factors: an overview[J]. Int J Biochem Cell Biol, 1997, 29(12):1305-1312
[2] Seshasayee ASN, Sivaraman K, Luscombe NM. An overview of prokaryotic transcription factors: a summary of function and occurrence in bacterial genomes[J].Subcell Biochem, 2011, 52:7-23
[3] Nelson D,Cox M. Lehninger Principles of Biochemistry (7 th ed), 2017
[4] Berg J,Tymoczko J. Biochemistry (7 th ed), 2012
[5] Krebs J, et al . Lewin's Genes XII, 2018
[6] Watson J, et al . Molecular Biology of the Gene (7 th ed), 2013
[7] Lodish H, et al . Molecular Cell Biology (8 th ed), 2016
[8] Alberts B, et al. Molecular Biology of the Cell (6 th ed), 2015
[9] Ahern K, Rajagopal I, Tan T. Biochemistry Free For All (version 1.3), 2018
[10] Webster MW, Takacs M, Zhu CJ, et al . Structural basis of transcription-translation coupling and collision in bacteria[J]. Science, 2020, 369(6509):1355-1359
[11] Wang C, Molodtsov V, Firlar E, et al . Structural basis of transcription-translation coupling[J]. Science, 2020, 369(6509):1359-1365
[12] Dorman CJ. Genome architecture and global gene regulation in bacteria: making progress towards a unified model?[J]. Nat Rev Microbiol, 2013, 11(5):349-355
[13] Browning DF, Busby SJW. Local and global regulation of transcription initiation in bacteria[J]. Nat Rev Microbiol, 2016, 14(10):638-650
[14] Mejía-Almonte C, Busby SJW, Wade JT, et al . Redefining fundamental concepts of transcription initiation in bacteria[J]. Nat Rev Genet, 2020, 21(11):699-714
[15] Lambert SA, Jolma A, Campitelli LF, et al . The human transcription factors[J]. Cell, 2018, 172(4):650-665
[16] Guo X Y, MyasnikovA G, Chen J, et al . Structural basis for NusA stabilized transcriptional pausing[J]. Mol Cell, 2018, 69(5):816-827.e4
[17] Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks[J]. FEMS Microbiol Rev, 2010, 34(5):628-645
[18] Kahramanoglou C, Cortes T, Matange N, et al . Genomic mapping of cAMP receptor protein (CRPMt) in Mycobacterium tuberculosis: relation to transcriptional start sites and the role of CRPMt as a transcription factor[J]. Nucleic Acids Res, 2014, 42(13):8320-8329
[19] Ralph ET, Guest JR, Green J. Altering the anaerobic transcription factor FNR confers a hemolytic phenotype on Escherichia coli K12[J]. Proc Natl Acad Sci USA, 1998, 95(18): 10449-10452
[20] Connolly JPR, O'Boyle N, Turner NCA, et al . Distinct intraspecies virulence mechanisms regulated by a conserved transcription factor[J]. Proc Natl Acad Sci USA, 2019, 116(39):19695-19704
[21] 毛晓华,丁蕾,汪道涌. 粘细菌转录因子FruA与结合蛋白FruB协同参与发育基因的调控[J]. 遗传学报(Mao Xiao-Hua, Ding Lei, Wang Dao-Yong. FruA, a transcription factor in myxococus xamthus, regulates transcription of target genes in collaboration with the associated protein FruB[J].J Genet Genomics, 2000, 27(6):556-562
[22] Jacob F, Perrin D, Sánchez C, et al . The operon: a group of genes with expression coordinated by an operator[J]. C R Hebd Seances Acad Sci, 1960, 250:1727-1729
[23] Busby S, Ebright RH. Transcription activation by catabolite activator protein (CAP)[J]. J MolBiol,1999, 293(2): 199-213
[24] Roeder RG, RutteR WJ. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms[J]. Nature, 1969, 224(5216):234-237
[25] Chambon P. Eukaryotic nuclear RNA polymerases[J]. Annu Rev Biochem, 1975, 44:613-638
[26] Engelke DR,Ng SY, Shastry BS, et al . Specific interaction of a purified transcription factor with an internal control region of 5S RNAgenes[J].Cell, 1980, 19(3):717-728
[27] Pelham HR, Brown DD. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA[J]. Proc Natl Acad Sci U S A, 1980, 77(7):4170-4174
[28] FocusEditorial. Five decades of eukaryotic transcription[J]. Nat Struct Mol Biol, 2019, 26(9):757
[29] Matsui T,Segall J,Weill PA, et al . Multiple factors required for accurate initiation of transcription by purified RNA polymerase II[J]. J Biol Chem, 1980, 255(24):11992-11991
[30] Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins[J].Annu Rev Biochem, 1981, 50:349-383
[31] Smale ST, Kadonaga JT. The RNA polymerase II core promoter[J].Annu Rev Biochem, 2003, 72: 449-479
[32] Gidoni D, Dynan WS, Tjian R. Multiple specific contacts between a mammalian transcription factor and its cognate promoters[J]. Nature, 1984, 312(5993):409-413
[33] Banerji J, Rusconi S, Schaffner W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences[J]. Cell, 1981, 27(2 Pt 1):299-308
[34] Banerji J, Olson L, Schaffner W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes[J]. Cell1983, 33(3):729-740
[35] Brand AH, Breeden L, Abraham J, et al. Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer[J]. Cell, 1985, 41(1):41-48
[36] Udvardy A, Maine E, Schedl P. The 87A7 chromomere identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains[J]. J Mol Biol, 1985, 185(2):341-358
[37] Wang JC. Finding primary targets of transcriptional regulators[J]. Cell Cycle, 2005, 4(3):356-358
[38] Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome[J]. Annu Rev Genomics Hum Genet, 2006, 7:29-59
[39] Gaston K, Jayaraman PS. Transcriptional repression in eukaryotes: repressors and repression mechanisms[J]. Cell Mol Life Sci, 2003, 60(4):721-741
[40] Babu MM, Luscombe NM, Aravind L, et al . Structure and evolution of transcriptional regulatory networks[J]. Curr Opin Struct Biol, 2004, 14(3):283-291
[41] Kelvin13, 2012, https://en.wikipedia.org/wiki/Transcription_factor
[42] Mazumder A, Kapanidis, AN. Recent advances in understanding σ70-dependent transcription initiation mechanisms[J]. J Mol Biol, 2019, 431(20):3947-3959
[43] Danson AE, Jovanovic M, Buck M, et al. Mechanisms of σ54-dependent transcription initiation and regulation[J]. J Mol Biol, 2019, 431(20):3960-3974
[44] Martinez-Antonio A, Collado-Vides J. Identifying global regulators in transcriptional regulatory networks in bacteria[J]. Curr Opin Microbiol, 2003, 6(5):482-489
[45] Park NY, Lee KW, Kim KS. H-NS Silences gene expression of LeuO, the master regulator of the cyclic(PhePro)-dependent signal pathway, in Vibrio vulnificus[J]. J Microbiol. Biotechnol, 2020, 30(6): 830-838
[46] Flentie K, Garner AL, Stallings CL. Mycobacterium tuberculosis transcription machinery: ready to respond to host attacks[J]. J Bacteriol, 2016, 198(9):1360-1373
[47] Rivera-Gómez N, Martínez-Núñez MA, Pastor N, et al. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea[J]. Microbiology, 2017,163(8):1167-1178
[48] Yang C, Chang C-H. Exploring comprehensive withinmotif dependence of transcription factor binding in Escherichia coli[J].Sci Rep, 2015, 5:17021
[49] Kim J-G, Mudgett MB.Tomato bHLH132 transcription factor controls growth and defense and is activated by Xanthomonas euvesicatoria effector XopD during pathogenesis[J]. Mol Plant Microbe Interact, 2019, 32(12):1614-1622
[50] Browning DF, Butala M, Busby SJW. Bacterial transcription factors: regulation by Pick “N” mix[J]. J Mol Biol, 2019, 431(20):4067-4077 郑培佩,肖健,吴艳青. PI3K/AKT/FOXO信号通路介导的自噬在糖尿病认知功能障碍中的作用 [J]. 中国生物化学与分子生物学报, 2021, 37(5): 588-594. 管昊然,李梦琪,韩英伦. 配对盒基因家族——发育过程中重要的转录因子 [J]. 中国生物化学与分子生物学报, 2021, 37(4): 449-457. 崔玮, 崔迪. 白细胞介素-6在酒精性肝病中的作用 [J]. 中国生物化学与分子生物学报, 2021, 37(4): 467-474. 陈慕华,刘小锋,邢宝才. 拮抗凋亡转录因子与肿瘤增殖及凋亡 [J]. 中国生物化学与分子生物学报, 2021, 37(3): 310-315. 金钊,邵淑丽,谭茗,李金炜,贾炳豪,王维禹,周瑶,崔婷婷,孙婴宁. KLF7通过抑制缺氧诱导因子1α转录影响肉鸡脂肪组织发育 [J]. 中国生物化学与分子生物学报, 2021, 37(3): 363-371. 曹君红, 陈蒙, 贾琦, 赵昭昭, 文海梅, 姚钧, 余鹏, 马海静, 倪挺, 魏刚. 剪接因子异质核糖核蛋白A2B1在癌细胞和衰老细胞中的相反表达趋势及其对癌细胞衰老的调控 [J]. 中国生物化学与分子生物学报, 2021, 37(1): 66-75. 赵晋英,曾佳佳,李艳伟. 肺的铁稳态机制与肺疾病时铁代谢的变化 [J]. 中国生物化学与分子生物学报, 2020, 36(9): 1002-1012. 许冬梅,唐中伟,朱芷葳,李鹏飞,董常生,赵宇军. MiR-186-5p对绵羊黑色素细胞黑色素生成的调控 [J]. 中国生物化学与分子生物学报, 2020, 36(8): 961-969. 刘文苏,田巍,周静,谷连坤,邓大君. 利用RNA转录组数据库挖掘肿瘤细胞EZH2基因候选转录因子 [J]. 中国生物化学与分子生物学报, 2020, 36(6): 665-673. 钱松,柴尹泽,余潇苓,苗青,赵燕娜,高瑞兰,尹利明. 人参皂苷Rd通过下调Nrf2表达调控H460细胞的增殖和凋亡 [J]. 中国生物化学与分子生物学报, 2020, 36(5): 566-572. 李俊,王红娟,胡清源. 神经退行性疾病中线粒体DNA拷贝数的变化及其调控 [J]. 中国生物化学与分子生物学报, 2020, 36(12): 1431-1437. 汪军梅,刘宇娟,薛俊慧,曹正意,蒋卫,李慧,张晓伟. 转录因子HBP1通过负调控磷脂酶C-γ1基因表达抑制宫颈癌细胞的迁移 [J]. 中国生物化学与分子生物学报, 2020, 36(12): 1455-1463. 黄燕,霍静,裴晋红,栗学清,汪军梅,宋丽华. Runx2在白藜芦醇诱导的小鼠BMSCs中的表达及生物信息学分析 [J]. 中国生物化学与分子生物学报, 2019, 35(9): 1006-1012. 何诗依,张缨. 运动、线粒体转录因子A与骨骼肌萎缩 [J]. 中国生物化学与分子生物学报, 2019, 35(8): 837-842.
主管: 中国科学技术协会 主办: 中国生物化学与分子生物学会 北京大学
地址:北京市海淀区学院路北京大学医学部院内(100191) Tel: 010-82801416 传真:010-82801416 E-mail: [email protected]
本系统由北京玛格泰克科技发展有限公司设计开发