The purpose of this study was to investigate the effects of three weeks of carnitine supplementation and HIT combination on aerobic capacity and oxidative stress. Ten untrained healthy males were recruited and randomly assigned into carnitine group (25.0±4.4 yr, 80.3±8.5 kg, 170.2±4.3 cm) or placebo group (22.4±3.3 yr, 69.1±11.2 kg, 172.2±6.3 cm). Subjects received carnitine or placebo supplementation 2 g per day for 3 weeks. All subjects also performed the HIT three day per week. The HIT protocol contains 10 bouts of cycling trail at 90%VO2max, with each bout lasting 2 min and separated by 1 min of rest. The increment cycling tests were conducted before and after supplementation. The VO2max and time to fatigue were measured by the increment cycling test. High-intensity interval exercise tests were also performed 48 hours after the increment cycling test. Blood samples were drawn before the test, immediately after test, 1 h and 3 h after test to determine the activities or concentrations of creatine kinase (CK) and uric acid, TBARS,F2-isoprostanes. The result showed that after 3 week of supplementation, VO2max (43.0±2.4 vs. 37.6±5.0 mL/min/kg) and time to fatigue (1563.0±221.0 vs. 1496.0±207.6 sec) significantly increased (p < .05) in carnitine group. However, there were no differences in placebo group. In carnitine group, the values of blood uric acid in high-intensity interval exercise test before supplementation still elevated at 3 h after test (7.8±2.0 vs. 8.8±2.1 mg/dL, p < .05). However, the values returned to baseline after 3 weeks of supplementation (7.8±1.9 vs. 7.7±1.9 mg/dL, p >.05) and uric acid at 1 and 3 hr after test were significantly lower than pre- supplementation (p <.05). In carnitine group, the values of blood TBARS after high-intensity interval exercise test before supplementation significantly elevated as compared to baseline (5.7±0.8 vs. 4.2±0.7 µmol/L,p < .05). However, there were no significant differences after 3 weeks of supplementation (4.6±1.7 vs. 4.3±0.9 mg/dL,p > .05) and TBARS concentrations at post 3 hr after exercise were significantly lower than pre- supplementation (p <.05). In carnitine group, the values of blood F2-isoprostanes in high-intensity interval exercise test before supplementation significantly increased immediately after test, (1328.4±67.5 vs. 1135.5±156.4 pg/ml,p < .05). However, the values returned to baseline after 3 weeks of supplementation (1217.5±235.0 vs. 1179.4±174.2 pg/mL,p > .05) and F2-isoprostanes concentrations immediately after test, at 1 and 3 hr after test were significantly lower than pre- supplementation (p <.05). It is concluded that carnitine supplementation during HIT is benefit to aerobic capacity and reduce the oxidative stress after high-intensity interval exercise.
目 錄
中文摘要 I
英文摘要 II
謝 誌 IV
表 目 錄 VII
圖 目 錄 VIII
第壹章 緒論 1
第一節 研究背景 1
第二節 研究目的 3
第貳章 文獻探討 4
第一節 肉鹼 4
第二節 高強度間歇訓練的效果與氧化壓力 10
第三節 文獻小結 12
第參章 研究方法與步驟 13
第一節 研究對象 13
第二節 實驗設計與步驟 14
第三節 資料處理 20
第肆章 結果 21
第一節 肉鹼增補對高強度間歇訓練後有氧能力的變化 22
第二節 肉鹼增補對高強度間歇訓練後氧化壓力的變化 23
第伍章 討論 25
第一節 有氧能力 25
第二節 氧化壓力 26
第陸章 結論與建議 27
參考文獻 28
中文部分 28
外文部分 28
參考文獻
中文部分
姚承義,沈淑貞 (2006)。單次間歇訓練引發氧化壓力的探討。運動教練科學,7期,69-78。
張敏娣(2007)。左旋肉鹼的補充對男子足球選手運動表現與訓練後生化值之影響,輔仁大學營養科學系碩士論文。
戚得軒(2009)。以活體1H磁振頻譜研究補充左旋肉鹼對人體骨骼肌肉中生化值含量及耐力運動表現的影響。元培科技大學放射技術研究所碩士論文。
趙文其,許美智(1999)。肉鹼增補劑與運動表現的關係。國立體育學院論叢,10卷1期,163-172.
外文部分
Aguilo, A., Tauler, P., Fuentespina, E., Tur, J. A., Cordova, A., &; Pons, A. (2005). Antioxidant response to oxidative stress induced by exhaustive exercise. Physiology &; Behavior, 84(1), 1-7.
Arenas, J., Huertas, R., Campos, Y., Diaz, A. E., Villalon, J. M., &; Vilas, E. (1994). Effects of L-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes. Federation of European Biochemical Societies, 341(1), 91-93.
Arenas, J., Ricoy, J. R., Encinas, A. R., Pola, P., D'Iddio, S., Zeviani, &; M., et al. (1991). Carnitine in muscle, serum, and urine of nonprofessional athletes: effects of physical exercise, training, and L-carnitine administration. Muscle Nerve, 14(7), 598-604.
Bentley, D. J., Newell, J., &; Bishop, D. (2007). Incremental exercise test design and analysis: Implications for performance diagnostics in endurance athletes. Sports Medicine 37(7), 575-586.
Billat, L. V. (2001). Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Medicine, 31(1), 13-31.
Bloomer, R. J. (2007). The role of nutritional supplements in the prevention and treatment of resistance exercise-induced skeletal muscle injury. American Journal of Sports Medicine, 37(6), 519-532.
Bloomer, R. J., &; Goldfarb, A. H. (2004). Anaerobic exercise and oxidative stress: A review. Canadian Journal of Applied Physiology, 29(3), 245-263.
Burgomaster, K. A., Cermak, N., Phillips, S. M., Benton, C., Bonen, A., &; Gibala, M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology – Regulatory, 292, R1970-R1976.
Clouet, P., Sempore, G., Tsoko, M., Gresti, J., Demarquoy, J., Niot, &; I., et al. (1996). Effect of short- and long-term treatments by a low level of dietary L-carnitine on parameters related to fatty acid oxidation in Wistar rat. Biochimica et Biophysica Acta, 1299(2), 191-197.
Decombaz, J., Gmuender, B., Sierro, G., &; Cerretelli, P. (1992). Muscle carnitine after strenuous endurance exercise. Journal of Applied Physiology, 72(2), 423-427.
Duran, M., Loof, N. E., Ketting, D., &; Dorland, L. (1990). Secondary carnitine deficiency. Journal of Clinical Chemistry and Clinical Biochemistry, 28(5), 359-363.
Edge, J., Bishop, D., &; Goodman, C. (2006). The effects of training intensity on muscle buffer capacity in females. Medicine &; Science in Sports &; Exercise, 96(1), 97-105.
Evans AM., Fornasini G. (2003). Pharmacokinetics of L-carnitine. Clin Pharmacokinet. 2003;42(11),941-67.
Finaud, J., Lac, G., &; Filaire, E. (2006). Oxidative stress: relationship with exercise and training. Sports Medicine 36(4), 327-358.
Giamberardino, M. A., Dragani, L., Valente, R., Di Lisa, F., Saggini, R., &; Vecchiet, L. (1996). Effects of prolonged L-carnitine administration on delayed muscle pain and CK release after eccentric effort. International Journal of Sports Medicine, 17(5), 320-324.
Gibala, M. J., &; McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36(2), 58-63.
Hoppel, C. (2003). The role of carnitine in normal and altered fatty acid metabolism. American Journal of Kidney Disease, 41(4 Suppl 4), S4-12.
Huertas, R., Campos, Y., Diaz, E., Esteban, J., Vechietti, L., Montanari, G. et al. (1992). Respiratory chain enzymes in muscle of endurance athletes: effect of L-carnitine. Biochemical and Biophysical Research Communications, 188(1), 102-107.
Jacobs, P. L., Goldstein, E. R., Blackburn, W., Orem, I., &; Hughes, J. J. (2009). Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males. Journal of the International Society of Sports Nutrition, 6-9.
Janssen, G. M., Scholte, H. R., Vaandrager-Verduin, M. H., &; Ross, J. D. (1989). Muscle carnitine level in endurance training and running a marathon. International Journal of Sports Medicine, 10 Suppl 3, S153-155.
Kadiiska, M. B., Gladen, B. C., Baird, D. D., Germolec, D., Graham, L. B., Parker, &; C. E., et al. (2005). Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Medicine, 38(6), 698-710.
Karlic, H., &; Lohninger, A. (2004). Supplementation of L-carnitine in athletes: Does it make sense? Nutrition, 20(7-8), 709-715.
Kashiwagi, A., Kanno, T., Arita, K., Ishisaka, R., Utsumi, T., &; Utsumi, K. (2001). Suppression of T (3) - and fatty acid-induced membrane permeability transition by L-carnitine. Comparative Biochemistry and Physiology. Part Biochemistry &; Molecular Biology, 130(3), 411-418.
Kayatekin, B. M., Gonenc, S., Acikgoz, O., Uysal, N., &; Dayi, A. (2002). Effects of sprint exercise on oxidative stress in skeletal muscle and liver. European Journal of Applied Physiology, 87(2), 141-144.
Kraemer, W. J., Spiering, B. A., Volek, J. S., Ratamess, N. A., Sharman, M. J., &; Rubin, M. R., et al. (2006). Androgenic responses to resistance exercise: effects of feeding and L-carnitine. Medicine and Science in Sports and Exercise, 38(7), 1288-1296.
Laursen, P. B., &; Jenkins, D. G. (2002). The scientific basis for high-intensity interval training. Sports Medicine, 32, 53-73.
Lee, J. K., Lee, J. S., Park, H., Cha, Y. S., Yoon, C. S., &; Kim, C. K. (2007). Effect of L-carnitine supplementation and aerobic training on FABPc content and beta-HAD activity in human skeletal muscle. European Journal of Applied Physiology, 99(2), 193-199.
Rebouche, C. J. (1992). Carnitine function and requirements during the life cycle. Official Publication of The Federation of American Societies for Experimental Biology, 6(15), 3379-3386.
Rebouche, C. J., &; Chenard, C. A. (1991). Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. The Journal of Nutrition, 121(4), 539-546.
Schneider, D. A., Phillips, S. E., &; Stoffolano, S. (1993). The simplified V-slope method of detecting the gas exchange threshold. Medicine &; Science in Sports &; Exercise, 25(10), 1180-1184.
Siliprandi, N., Di Lisa, F., Pieralisi, G., Ripari, P., Maccari, F., Menabo, R., et al. (1990). Metabolic changes induced by maximal exercise in human subjects following L-carnitine administration. Biochimica et Biophysica Acta, 1034(1), 17-21.
Spiering, B. A., Kraemer, W. J., Vingren, J. L., Hatfield, D. L., Fragala, M. S., Ho, J. Y., et al. (2007). Responses of criterion variables to different supplemental doses of L-carnitine L-tartrate. Journal of Strength and Conditioning Research, 21(1), 259-264.
Steiber, A., Kerner, J., &; Hoppel, C. L. (2004). Carnitine: a nutritional, biosynthetic, and functional perspective. Molecular Aspects of Medicine, 25(5-6), 455-473.
Talanian, J. L., Galloway, S. D., Heigenhauser, G. J., Bonen, A., &; Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439-1447.
Tiidus, P. M., &; Houston, M. E. (1994). Antioxidant and oxidative enzyme adaptations to vitamin E deprivation and training. Medicine &; Science in Sports &; Exercise, 26(3), 354-359.
Trappe, S. W., Costill, D. L., Goodpaster, B., Vukovich, M. D., &; Fink, W. J. (1994). The effects of L-carnitine supplementation on performance during interval swimming. International Journal of Sports Medicine, 15(4), 181-185.
Urso, M. L., &; Clarkson, P. M. (2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189(1-2), 41-54.
Volek, J. S., Kraemer, W. J., Rubin, M. R., Gomez, A. L., Ratamess, N. A., &; Gaynor, P. (2002). L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. American Journal of Physiology, 282(2), E474-482.
Ward, A., Ebbeling, C. B., &; Ahlquist, L. E. (1995). Indirect methods for estimation of aerobic power. Physiological Assessment of Human Fitness, 37-54.
Williams, &; Wilkins. (1999). Carnitine. Modern Nutrition in Health and Disease, 9th ed, 505-512.