教学视频
-
综合
2. 定位
书籍
1.综合
2. Planning
3.高精度地图和定位
《视觉SLAM十四讲》
高精度地图和定位需要的基础知识
自动驾驶技术栈
[1]
这里主要对自动驾驶技术做了硬件和软件2个大类的划分,图片如果不清晰可以查看
思维导图原图链接
开源项目
开源项目也是学习的重要方面
1.全栈
2. 仿真
数据集
-
驾驶数据集
2.
交通标志数据集
论文
-
论文下载
论文下载强烈推荐,感谢这个网站的作者。
removing barriers in the way of science
2. 自动驾驶综述
-
Self-Driving Cars: A Survey
-
Towards Fully Autonomous Driving: Systems and Algorithms
-
A Survey of Autonomous Driving: Common Practices and Emerging Technologies
3. 定位
下面总结了目前主流的定位方法,以及其优缺点,参考"
A Survey of Autonomous Driving: Common Practices and Emerging Technologies
"需要的自取
1.state-of-art定位综述
A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications
2.SLAM方法在自动驾驶领域应用综述
Simultaneous localization and mapping: A survey of current trends in autonomous driving
3.斯坦福DARPA比赛开山之作,主要是关于SLAM方法
Map-Based Precision Vehicle Localization in Urban Environments Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
4.百度GNSS和点云定位融合方案
Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes
4. 感知
-
计算机视觉在自动驾驶应用综述
Computer Vision for Autonomous Vehicles:Problems, Datasets and State-of-the-Art
2. 物体识别综述
-
Object Detection With Deep Learning: A Review
-
50 Years of object recognition: Directions forward
-
Deep Learning for Generic Object Detection: A Survey
-
Object Detection in 20 Years: A Survey -
2019
3. 道路和车道识别
Recent progress in road and lane detection: a survey
5.预测
A Review of Tracking, Prediction and Decision Making Methods for Autonomous Driving
6. 规划控制
-
综述论文
2. 百度EMplanner论文
Baidu Apollo EM Motion Planner
7. End-to-End
端到端自动驾驶
End to End Learning for Self-Driving Cars - 2016 NVIDIA
8.V2X
-
v2x测试综述
A Survey of Vehicle to Everything (V2X) Testing
9. DARPA
DARPA城市挑战赛是无人驾驶技术的鼻祖,下面是参赛的队伍发表的论文集
-
Autonomous Driving in Urban Environments:Boss and the Urban Challenge
-
Motion Planning in Urban Environments
-
Junior: Stanford in The Urban Challenge
-
Odin: Team VictorTango’s entry in the DUC
-
A Perception-Driven Autonomous Urban Vehicle
-
Little Ben: The Ben Franklin Racing Team’s Entry in the 2007 DARPA Urban Challenge
-
Team Cornell’s Skynet: Robust Perception and Planning in anUrban Environment
-
A Practical Approach to Robotic Design for the DARPA Urban Challenge
-
Team AnnieWAY’s Autonomous System for the DARPA Urban Challenge 2007
-
Driving with Tentacles: Integral Structures for Sensingand Motion
-
Caroline: An Autonomously Driving Vehicle for Urban Environments
-
The MIT–Cornell Collision and Why It Happened
-
A Perspective on Emerging Automotive Safety Applications,Derived from Lessons Learned through Participation in the DARPA Grand Challenges
-
TerraMax: Team Oshkosh Urban Robot
参考
博客
1.资料合集
2.高精度地图