添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

The value-add provided by the Spring Framework JDBC abstraction is perhaps best shown by the sequence of actions outlined in the table below. The table shows what actions Spring will take care of and which actions are the responsibility of you, the application developer.


The Spring Framework takes care of all the low-level details that can make JDBC such a tedious API to develop with.

You can choose among several approaches to form the basis for your JDBC database access. In addition to three flavors of the JdbcTemplate, a new SimpleJdbcInsert and SimplejdbcCall approach optimizes database metadata, and the RDBMS Object style takes a more object-oriented approach similar to that of JDO Query design. Once you start using one of these approaches, you can still mix and match to include a feature from a different approach. All approaches require a JDBC 2.0-compliant driver, and some advanced features require a JDBC 3.0 driver.

[Note] Note

Spring 3.0 updates all of the following approaches with Java 5 support such as generics and varargs.

The Spring Framework's JDBC abstraction framework consists of four different packages, namely core , datasource , object , and support .

The org.springframework.jdbc.core package contains the JdbcTemplate class and its various callback interfaces, plus a variety of related classes. A subpackage named org.springframework.jdbc.core.simple contains the SimpleJdbcTemplate class and the related SimpleJdbcInsert and SimpleJdbcCall classes. Another subpackage named org.springframework.jdbc.core.namedparam contains the NamedParameterJdbcTemplate class and the related support classes. See Section 12.2, “Using the JDBC core classes to control basic JDBC processing and error handling” , Section 12.4, “JDBC batch operations” , and Section 12.5, “Simplifying JDBC operations with the SimpleJdbc classes”

The org.springframework.jdbc.datasource package contains a utility class for easy DataSource access, and various simple DataSource implementations that can be used for testing and running unmodified JDBC code outside of a Java EE container. A subpackage named org.springfamework.jdbc.datasource.embedded provides support for creating in-memory database instances using Java database engines such as HSQL and H2. See Section 12.3, “Controlling database connections” and Section 12.8, “Embedded database support”

The org.springframework.jdbc.object package contains classes that represent RDBMS queries, updates, and stored procedures as thread safe, reusable objects. See Section 12.6, “Modeling JDBC operations as Java objects” .This approach is modeled by JDO, although of course objects returned by queries are “ disconnected ” from the database. This higher level of JDBC abstraction depends on the lower-level abstraction in the org.springframework.jdbc.core package.

The org.springframework.jdbc.support package provides SQLException translation functionality and some utility classes. Exceptions thrown during JDBC processing are translated to exceptions defined in the org.springframework.dao package. This means that code using the Spring JDBC abstraction layer does not need to implement JDBC or RDBMS-specific error handling. All translated exceptions are unchecked, which gives you the option of catching the exceptions from which you can recover while allowing other exceptions to be propagated to the caller. See Section 12.2.4, “SQLExceptionTranslator” .

The JdbcTemplate class is the central class in the JDBC core package. It handles the creation and release of resources, which helps you avoid common errors such as forgetting to close the connection. It performs the basic tasks of the core JDBC workflow such as statement creation and execution, leaving application code to provide SQL and extract results. The JdbcTemplate class executes SQL queries, update statements and stored procedure calls, performs iteration over ResultSet s and extraction of returned parameter values. It also catches JDBC exceptions and translates them to the generic, more informative, exception hierarchy defined in the org.springframework.dao package.

When you use the JdbcTemplate for your code, you only need to implement callback interfaces, giving them a clearly defined contract. The PreparedStatementCreator callback interface creates a prepared statement given a Connection provided by this class, providing SQL and any necessary parameters. The same is true for the CallableStatementCreator interface, which creates callable statements. The RowCallbackHandler interface extracts values from each row of a ResultSet .

The JdbcTemplate can be used within a DAO implementation through direct instantiation with a DataSource reference, or be configured in a Spring IoC container and given to DAOs as a bean reference.

[Note] Note

The DataSource should always be configured as a bean in the Spring IoC container. In the first case the bean is given to the service directly; in the second case it is given to the prepared template.

All SQL issued by this class is logged at the DEBUG level under the category corresponding to the fully qualified class name of the template instance (typically JdbcTemplate , but it may be different if you are using a custom subclass of the JdbcTemplate class).

This section provides some examples of JdbcTemplate class usage. These examples are not an exhaustive list of all of the functionality exposed by the JdbcTemplate ; see the attendant Javadocs for that.

Here is a simple query for getting the number of rows in a relation:

int rowCount = this.jdbcTemplate.queryForInt("select count(*) from t_actor");

A simple query using a bind variable:

int countOfActorsNamedJoe = this.jdbcTemplate.queryForInt(
        "select count(*) from t_actor where first_name = ?", "Joe");

Querying for a String :

String lastName = this.jdbcTemplate.queryForObject(
        "select last_name from t_actor where id = ?", 
        new Object[]{1212L}, String.class);

Querying and populating a single domain object:

Actor actor = this.jdbcTemplate.queryForObject(
        "select first_name, last_name from t_actor where id = ?",
        new Object[]{1212L},
        new RowMapper<Actor>() {
            public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
                Actor actor = new Actor();
                actor.setFirstName(rs.getString("first_name"));
                actor.setLastName(rs.getString("last_name"));
                return actor;

Querying and populating a number of domain objects:

List<Actor> actors = this.jdbcTemplate.query(
        "select first_name, last_name from t_actor",
        new RowMapper<Actor>() {
            public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
                Actor actor = new Actor();
                actor.setFirstName(rs.getString("first_name"));
                actor.setLastName(rs.getString("last_name"));
                return actor;

If the last two snippets of code actually existed in the same application, it would make sense to remove the duplication present in the two RowMapper anonymous inner classes, and extract them out into a single class (typically a static inner class) that can then be referenced by DAO methods as needed. For example, it may be better to write the last code snippet as follows:

public List<Actor> findAllActors() {
    return this.jdbcTemplate.query( "select first_name, last_name from t_actor", new ActorMapper());
private static final class ActorMapper implements RowMapper<Actor> {
    public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
        Actor actor = new Actor();
        actor.setFirstName(rs.getString("first_name"));
        actor.setLastName(rs.getString("last_name"));
        return actor;
}

Instances of the JdbcTemplate class are threadsafe once configured . This is important because it means that you can configure a single instance of a JdbcTemplate and then safely inject this shared reference into multiple DAOs (or repositories). The JdbcTemplate is stateful, in that it maintains a reference to a DataSource , but this state is not conversational state.

A common practice when using the JdbcTemplate class (and the associated SimpleJdbcTemplate and NamedParameterJdbcTemplate classes) is to configure a DataSource in your Spring configuration file, and then dependency-inject that shared DataSource bean into your DAO classes; the JdbcTemplate is created in the setter for the DataSource . This leads to DAOs that look in part like the following:

public class JdbcCorporateEventDao implements CorporateEventDao {
    private JdbcTemplate jdbcTemplate;
    public void setDataSource(DataSource dataSource) {
        this.jdbcTemplate = new JdbcTemplate(dataSource);
    // JDBC-backed implementations of the methods on the CorporateEventDao follow...
}

The corresponding configuration might look like this.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="
        http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context-3.0.xsd">
    <bean id="corporateEventDao" class="com.example.JdbcCorporateEventDao">
        <property name="dataSource" ref="dataSource"/>
    </bean>
    <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
        <property name="driverClassName" value="${jdbc.driverClassName}"/>
        <property name="url" value="${jdbc.url}"/>
        <property name="username" value="${jdbc.username}"/>
        <property name="password" value="${jdbc.password}"/>
    </bean>
    <context:property-placeholder location="jdbc.properties"/>
</beans>

An alternative to explicit configuration is to use component-scanning and annotation support for dependency injection. In this case you annotate the class with @Repository (which makes it a candidate for component-scanning) and annotate the DataSource setter method with @Autowired .

@Repository
public class JdbcCorporateEventDao implements CorporateEventDao {
    private JdbcTemplate jdbcTemplate;
    @Autowired
    public void setDataSource(DataSource dataSource) {
        this.jdbcTemplate = new JdbcTemplate(dataSource);
    // JDBC-backed implementations of the methods on the CorporateEventDao follow...
}

The corresponding XML configuration file would look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context"
    xsi:schemaLocation="
        http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context-3.0.xsd">
    <!-- Scans within the base package of the application for @Components to configure as beans -->
    <context:component-scan base-package="org.springframework.docs.test" />
    <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
        <property name="driverClassName" value="${jdbc.driverClassName}"/>
        <property name="url" value="${jdbc.url}"/>
        <property name="username" value="${jdbc.username}"/>
        <property name="password" value="${jdbc.password}"/>
    </bean>
    <context:property-placeholder location="jdbc.properties"/>
</beans>

If you are using Spring's JdbcDaoSupport class, and your various JDBC-backed DAO classes extend from it, then your sub-class inherits a setDataSource(..) method from the JdbcDaoSupport class. You can choose whether to inherit from this class. The JdbcDaoSupport class is provided as a convenience only.

Regardless of which of the above template initialization styles you choose to use (or not), it is seldom necessary to create a new instance of a JdbcTemplate class each time you want to execute SQL. Once configured, a JdbcTemplate instance is threadsafe. You may want multiple JdbcTemplate instances if your application accesses multiple databases, which requires multiple DataSources , and subsequently multiple differently configured JdbcTemplates .

The NamedParameterJdbcTemplate class adds support for programming JDBC statements using named parameters, as opposed to programming JDBC statements using only classic placeholder ( '?' ) arguments. The NamedParameterJdbcTemplate class wraps a JdbcTemplate , and delegates to the wrapped JdbcTemplate to do much of its work. This section describes only those areas of the NamedParameterJdbcTemplate class that differ from the JdbcTemplate itself; namely, programming JDBC statements using named parameters.

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;
public void setDataSource(DataSource dataSource) {
    this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
public int countOfActorsByFirstName(String firstName) {
    String sql = "select count(*) from T_ACTOR where first_name = :first_name";
    SqlParameterSource namedParameters = new MapSqlParameterSource("first_name", firstName);
    return namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
}

Notice the use of the named parameter notation in the value assigned to the sql variable, and the corresponding value that is plugged into the namedParameters variable (of type MapSqlParameterSource ).

Alternatively, you can pass along named parameters and their corresponding values to a NamedParameterJdbcTemplate instance by using the Map -based style.The remaining methods exposed by the NamedParameterJdbcOperations and implemented by the NamedParameterJdbcTemplate class follow a similar pattern and are not covered here.

The following example shows the use of the Map -based style.

// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;
public void setDataSource(DataSource dataSource) {
    this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
public int countOfActorsByFirstName(String firstName) {
    String sql = "select count(*) from T_ACTOR where first_name = :first_name";
    Map namedParameters = Collections.singletonMap("first_name", firstName);
    return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
}

One nice feature related to the NamedParameterJdbcTemplate (and existing in the same Java package) is the SqlParameterSource interface. You have already seen an example of an implementation of this interface in one of the previous code snippet (the MapSqlParameterSource class). An SqlParameterSource is a source of named parameter values to a NamedParameterJdbcTemplate . The MapSqlParameterSource class is a very simple implementation that is simply an adapter around a java.util.Map , where the keys are the parameter names and the values are the parameter values.

Another SqlParameterSource implementation is the BeanPropertySqlParameterSource class. This class wraps an arbitrary JavaBean (that is, an instance of a class that adheres to the JavaBean conventions ), and uses the properties of the wrapped JavaBean as the source of named parameter values.

public class Actor {
    private Long id;
    private String firstName;
    private String lastName;
    public String getFirstName() {
        return this.firstName;
    public String getLastName() {
        return this.lastName;
    public Long getId() {
        return this.id;
    // setters omitted...
}
// some JDBC-backed DAO class...
private NamedParameterJdbcTemplate namedParameterJdbcTemplate;
public void setDataSource(DataSource dataSource) {
    this.namedParameterJdbcTemplate = new NamedParameterJdbcTemplate(dataSource);
public int countOfActors(Actor exampleActor) {
    // notice how the named parameters match the properties of the above 'Actor' class
    String sql = 
        "select count(*) from T_ACTOR where first_name = :firstName and last_name = :lastName";
    SqlParameterSource namedParameters = new BeanPropertySqlParameterSource(exampleActor);
    return this.namedParameterJdbcTemplate.queryForInt(sql, namedParameters);
}

Remember that the NamedParameterJdbcTemplate class wraps a classic JdbcTemplate template; if you need access to the wrapped JdbcTemplate instance to access functionality only present in the JdbcTemplate class, you can use the getJdbcOperations() method to access the wrapped JdbcTemplate through the JdbcOperations interface.

See also Section 12.2.1.2, “JdbcTemplate best practices” for guidelines on using the NamedParameterJdbcTemplate class in the context of an application.

The SimpleJdbcTemplate class wraps the classic JdbcTemplate and leverages Java 5 language features such as varargs and autoboxing.

[Note] Note

In Spring 3.0, the original JdbcTemplate also supports Java 5-enhanced syntax with generics and varargs. However, the SimpleJdbcTemplate provides a simpler API that works best when you do not need access to all the methods that the JdbcTemplate offers. Also, because the SimpleJdbcTemplate was designed for Java 5, it has more methods that take advantage of varargs due to different ordering of the parameters.

The value-add of the SimpleJdbcTemplate class in the area of syntactic-sugar is best illustrated with a before-and-after example. The next code snippet shows data access code that uses the classic JdbcTemplate , followed by a code snippet that does the same job with the SimpleJdbcTemplate .

// classic JdbcTemplate-style...
private JdbcTemplate jdbcTemplate;
public void setDataSource(DataSource dataSource) {
    this.jdbcTemplate = new JdbcTemplate(dataSource);
public Actor findActor(String specialty, int age) {
    String sql = "select id, first_name, last_name from T_ACTOR" + 
            " where specialty = ? and age = ?";
    RowMapper<Actor> mapper = new RowMapper<Actor>() {
        public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
            Actor actor = new Actor();
            actor.setId(rs.getLong("id"));
            actor.setFirstName(rs.getString("first_name"));
            actor.setLastName(rs.getString("last_name"));
            return actor;
    // notice the wrapping up of the argumenta in an array
    return (Actor) jdbcTemplate.queryForObject(sql, new Object[] {specialty, age}, mapper);
}

Here is the same method, with the SimpleJdbcTemplate .

// SimpleJdbcTemplate-style...
private SimpleJdbcTemplate simpleJdbcTemplate;
public void setDataSource(DataSource dataSource) {
    this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
public Actor findActor(String specialty, int age) {
    String sql = "select id, first_name, last_name from T_ACTOR" + 
            " where specialty = ? and age = ?";
    RowMapper<Actor> mapper = new RowMapper<Actor>() {  
        public Actor mapRow(ResultSet rs, int rowNum) throws SQLException {
            Actor actor = new Actor();
            actor.setId(rs.getLong("id"));
            actor.setFirstName(rs.getString("first_name"));
            actor.setLastName(rs.getString("last_name"));
            return actor;
    // notice the use of varargs since the parameter values now come 
    // after the RowMapper parameter
    return this.simpleJdbcTemplate.queryForObject(sql, mapper, specialty, age);
}

See Section 12.2.1.2, “JdbcTemplate best practices” for guidelines on how to use the SimpleJdbcTemplate class in the context of an application.

[Note] Note

The SimpleJdbcTemplate class only offers a subset of the methods exposed on the JdbcTemplate class. If you need to use a method from the JdbcTemplate that is not defined on the SimpleJdbcTemplate , you can always access the underlying JdbcTemplate by calling the getJdbcOperations() method on the SimpleJdbcTemplate , which then allows you to invoke the method that you want. The only downside is that the methods on the JdbcOperations interface are not generic, so you are back to casting and so on.

SQLExceptionTranslator is an interface to be implemented by classes that can translate between SQLExceptions and Spring's own org.springframework.dao.DataAccessException , which is agnostic in regard to data access strategy. Implementations can be generic (for example, using SQLState codes for JDBC) or proprietary (for example, using Oracle error codes) for greater precision.

SQLErrorCodeSQLExceptionTranslator is the implementation of SQLExceptionTranslator that is used by default. This implementation uses specific vendor codes. It is more precise than the SQLState implementation. The error code translations are based on codes held in a JavaBean type class called SQLErrorCodes . This class is created and populated by an SQLErrorCodesFactory which as the name suggests is a factory for creating SQLErrorCodes based on the contents of a configuration file named sql-error-codes.xml . This file is populated with vendor codes and based on the DatabaseProductName taken from the DatabaseMetaData . The codes for the acual database you are using are used.

The SQLErrorCodeSQLExceptionTranslator applies matching rules in the following sequence:

You can extend SQLErrorCodeSQLExceptionTranslator:

public class CustomSQLErrorCodesTranslator extends SQLErrorCodeSQLExceptionTranslator {
    protected DataAccessException customTranslate(String task, String sql, SQLException sqlex) {
        if (sqlex.getErrorCode() == -12345) {
            return new DeadlockLoserDataAccessException(task, sqlex);
        return null;
}

In this example, the specific error code -12345 is translated and other errors are left to be translated by the default translator implementation. To use this custom translator, it is necessary to pass it to the JdbcTemplate through the method setExceptionTranslator and to use this JdbcTemplate for all of the data access processing where this translator is needed. Here is an example of how this custom translator can be used:

private JdbcTemplate jdbcTemoplate;
public void setDataSource(DataSource dataSource) {
    // create a JdbcTemplate and set data source 
    this.jdbcTemplate = new JdbcTemplate(); 
    this.jdbcTemplate.setDataSource(dataSource); 
    // create a custom translator and set the DataSource for the default translation lookup 
    CustomSQLErrorCodesTranslator tr = new CustomSQLErrorCodesTranslator(); 
    tr.setDataSource(dataSource); 
    this.jdbcTemplate.setExceptionTranslator(tr); 
public void updateShippingCharge(long orderId, long pct) {
    // use the prepared JdbcTemplate for this update
    this.jdbcTemplate.update(
        "update orders" + 
            " set shipping_charge = shipping_charge * ? / 100" + 
            " where id = ?"
        pct, orderId); 
}

The custom translator is passed a data source in order to look up the error codes in sql-error-codes.xml .

Some query methods return a single value. To retrieve a count or a specific value from one row, use queryForInt(..) , queryForLong(..) or queryForObject(..) . The latter converts the returned JDBC Type to the Java class that is passed in as an argument. If the type conversion is invalid, then an InvalidDataAccessApiUsageException is thrown. Here is an example that contains two query methods, one for an int and one that queries for a String .

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;
public class RunAQuery {
    private JdbcTemplate jdbcTemplate;
    public void setDataSource(DataSource dataSource) {
        this.jdbcTemplate = new JdbcTemplate(dataSource);
    public int getCount() {
        return this.jdbcTemplate.queryForInt("select count(*) from mytable");
    public String getName() {
        return (String) this.jdbcTemplate.queryForObject("select name from mytable", String.class);
    public void setDataSource(DataSource dataSource) {
        this.dataSource = dataSource;
}

In addition to the single result query methods, several methods return a list with an entry for each row that the query returned. The most generic method is queryForList(..) which returns a List where each entry is a Map with each entry in the map representing the column value for that row. If you add a method to the above example to retrieve a list of all the rows, it would look like this:

private JdbcTemplate jdbcTemplate;
public void setDataSource(DataSource dataSource) {
    this.jdbcTemplate = new JdbcTemplate(dataSource);
public List<Map<String, Object>> getList() {
    return this.jdbcTemplate.queryForList("select * from mytable");
}

The list returned would look something like this:

[{name=Bob, id=1}, {name=Mary, id=2}]

Spring obtains a connection to the database through a DataSource . A DataSource is part of the JDBC specification and is a generalized connection factory. It allows a container or a framework to hide connection pooling and transaction management issues from the application code. As a developer, you need not know details about how to connect to the database; that is the responsibility of the administrator that sets up the datasource. You most likely fill both roles as you develop and test code, but you do not necessarily have to know how the production data source is configured.

When using Spring's JDBC layer, you obtain a data source from JNDI or you configure your own with a connection pool implementation provided by a third party. Popular implementations are Apache Jakarta Commons DBCP and C3P0. Implementations in the Spring distribution are meant only for testing purposes and do not provide pooling.

This section uses Spring's DriverManagerDataSource implementation, and several additional implementations are covered later.

[Note] Note

Only use the DriverManagerDataSource class should only be used for testing purposes since it does not provide pooling and will perform poorly when multiple requests for a connection are made.

You obtain a connection with DriverManagerDataSource as you typically obtain a JDBC connection. Specify the fully qualified classname of the JDBC driver so that the DriverManager can load the driver class. Next, provide a URL that varies between JDBC drivers. (Consult the documentation for your driver for the correct value.) Then provide a username and a password to connect to the database. Here is an example of how to configure a DriverManagerDataSource in Java code:

DriverManagerDataSource dataSource = new DriverManagerDataSource();
dataSource.setDriverClassName("org.hsqldb.jdbcDriver");
dataSource.setUrl("jdbc:hsqldb:hsql://localhost:");
dataSource.setUsername("sa");
dataSource.setPassword("");

Here is the corresponding XML configuration:

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
    <property name="driverClassName" value="${jdbc.driverClassName}"/>
    <property name="url" value="${jdbc.url}"/>
    <property name="username" value="${jdbc.username}"/>
    <property name="password" value="${jdbc.password}"/>
</bean>
<context:property-placeholder location="jdbc.properties"/>

The following examples show the basic connectivity and configuration for DBCP and C3P0. To learn about more options that help control the pooling features, see the product documentation for the respective connection pooling implementations.

DBCP configuration:

<bean id="dataSource" 
        class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
    <property name="driverClassName" value="${jdbc.driverClassName}"/>
    <property name="url" value="${jdbc.url}"/>
    <property name="username" value="${jdbc.username}"/>
    <property name="password" value="${jdbc.password}"/>
</bean>
<context:property-placeholder location="jdbc.properties"/>

C3P0 configuration:

<bean id="dataSource"
        class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close">
    <property name="driverClass" value="${jdbc.driverClassName}"/>
    <property name="jdbcUrl" value="${jdbc.url}"/>
    <property name="user" value="${jdbc.username}"/>
    <property name="password" value="${jdbc.password}"/>
</bean>
<context:property-placeholder location="jdbc.properties"/>

TransactionAwareDataSourceProxy is a proxy for a target DataSource , which wraps that target DataSource to add awareness of Spring-managed transactions. In this respect, it is similar to a transactional JNDI DataSource as provided by a Java EE server.

[Note] Note

It is rarely desirable to use this class, except when already existing code that must be called and passed a standard JDBC DataSource interface implementation. In this case, it's possible to still have this code be usable, and at the same time have this code participating in Spring managed transactions. is generally preferable to write your own new code using the higher level abstractions for resource management, such as JdbcTemplate or DataSourceUtils .

(See the TransactionAwareDataSourceProxy Javadocs for more details.)

Most JDBC drivers provide improved performance if you batch multiple calls to the same prepared statement. By grouping updates into batches you limit the number of round trips to the database. This section covers batch processing using both the JdbcTemplate and the SimpleJdbcTemplate .

You accomplish JdbcTemplate batch processing by implementing two methods of a special interface, BatchPreparedStatementSetter , and passing that in as the second parameter in your batchUpdate method call. Use the getBatchSize method to provide the size of the current batch. Use the setValues method to set the values for the parameters of the prepared statement. This method will be called the number of times that you specified in the getBatchSize call. The following example updates the actor table based on entries in a list. The entire list is used as the batch in this example:

public class JdbcActorDao implements ActorDao {
    private JdbcTemplate jdbcTemplate;
    public void setDataSource(DataSource dataSource) {
        this.jdbcTemplate = new JdbcTemplate(dataSource);
    public int[] batchUpdate(final List<Actor> actors) {
        int[] updateCounts = jdbcTemplate.batchUpdate(
                "update t_actor set first_name = ?, last_name = ? where id = ?",
                new BatchPreparedStatementSetter() {
                    public void setValues(PreparedStatement ps, int i) throws SQLException {
                        ps.setString(1, actors.get(i).getFirstName());
                        ps.setString(2, actors.get(i).getLastName());
                        ps.setLong(3, actors.get(i).getId().longValue());
                    public int getBatchSize() {
                        return actors.size();
        return updateCounts;
    //  ... additional methods
}

If you are processing a stream of updates or reading from a file, then you might have a preferred batch size, but the last batch might not have that number of entries. In this case you can use the InterruptibleBatchPreparedStatementSetter interface, which allows you to interrupt a batch once the input source is exhausted. The isBatchExhausted method allows you to signal the end of the batch.

The SimpleJdbcTemplate provides an alternate way of providing the batch update. Instead of implementing a special batch interface, you provide all parameter values in the call. The framework loops over these values and uses an internal prepared statement setter. The API varies depending on whether you use named parameters. For the named parameters you provide an array of SqlParameterSource , one entry for each member of the batch. You can use the SqlParameterSource.createBatch method to create this array, passing in either an array of JavaBeans or an array of Maps containing the parameter values.

This example shows a batch update using named parameters:

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
    public int[] batchUpdate(final List<Actor> actors) {
        SqlParameterSource[] batch = SqlParameterSourceUtils.createBatch(actors.toArray());
        int[] updateCounts = simpleJdbcTemplate.batchUpdate(
            "update t_actor set first_name = :firstName, last_name = :lastName where id = :id",
            batch);
        return updateCounts;
    //  ... additional methods
}

For an SQL statement using the classic "?" placeholders, you pass in a list containing an object array with the update values. This object array must have one entry for each placeholder in the SQL statement, and they must be in the same order as they are defined in the SQL statement.

The same example using classic JDBC "?" placeholders:

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
    public int[] batchUpdate(final List<Actor> actors) {
        List<Object[]> batch = new ArrayList<Object[]>();
        for (Actor actor : actors) {
            Object[] values = new Object[] {
                    actor.getFirstName(),
                    actor.getLastName(),
                    actor.getId()};
            batch.add(values);
        int[] updateCounts = simpleJdbcTemplate.batchUpdate(
                "update t_actor set first_name = ?, last_name = ? where id = ?",
                batch);
        return updateCounts;
    //  ... additional methods
}

All batch update methods return an int array containing the number of affected rows for each batch entry. This count is reported by the JDBC driver. If the count is not available, the JDBC driver returns a -2 value.

The SimpleJdbcInsert and SimpleJdbcCall classes provide a simplified configuration by taking advantage of database metadata that can be retrieved through the JDBC driver. This means there is less to configure up front, although you can override or turn off the metadata processing if you prefer to provide all the details in your code.

Let's start by looking at the SimpleJdbcInsert class with the minimal amount of configuration options. You should instantiate the SimpleJdbcInsert in the data access layer's initialization method. For this example, the initializing method is the setDataSource method. You do not need to subclass the SimpleJdbcInsert class; simply create a new instance and set the table name using the withTableName method. Configuration methods for this class follow the "fluid" style that returns the instance of the SimpleJdbcInsert , which allows you to chain all configuration methods. This example uses only one configuration method; you will see examples of multiple ones later.

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    private SimpleJdbcInsert insertActor;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
        this.insertActor = 
                new SimpleJdbcInsert(dataSource).withTableName("t_actor");
    public void add(Actor actor) {
        Map<String, Object> parameters = new HashMap<String, Object>(3);
        parameters.put("id", actor.getId());
        parameters.put("first_name", actor.getFirstName());
        parameters.put("last_name", actor.getLastName());
        insertActor.execute(parameters);
    //  ... additional methods
}

The execute method used here takes a plain java.utils.Map as its only parameter. The important thing to note here is that the keys used for the Map must match the column names of the table as defined in the database. This is because we read the metadata in order to construct the actual insert statement.

This example uses the same insert as the preceding, but instead of passing in the id it retrieves the auto-generated key and sets it on the new Actor object. When you create the SimpleJdbcInsert , in addition to specifying the table name, you specify the name of the generated key column with the usingGeneratedKeyColumns method.

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    private SimpleJdbcInsert insertActor;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
        this.insertActor =
                new SimpleJdbcInsert(dataSource)
                        .withTableName("t_actor")
                        .usingGeneratedKeyColumns("id");
    public void add(Actor actor) {
        Map<String, Object> parameters = new HashMap<String, Object>(2);
        parameters.put("first_name", actor.getFirstName());
        parameters.put("last_name", actor.getLastName());
        Number newId = insertActor.executeAndReturnKey(parameters);
        actor.setId(newId.longValue());
    //  ... additional methods
}

The main difference when executing the insert by this second approach is that you do not add the id to the Map and you call the executeReturningKey method. This returns a java.lang.Number object with which you can create an instance of the numerical type that is used in our domain class.You cannot rely on all databases to return a specific Java class here; java.lang.Number is the base class that you can rely on. If you have multiple auto-generated columns, or the generated values are non-numeric, then you can use a KeyHolder that is returned from the executeReturningKeyHolder method.

Using a Map to provide parameter values works fine, but it's not the most convenient class to use. Spring provides a couple of implementations of the SqlParameterSource interface that can be used instead.The first one is BeanPropertySqlParameterSource , which is a very convenient class if you have a JavaBean-compliant class that contains your values. It will use the corresponding getter method to extract the parameter values. Here is an example:

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    private SimpleJdbcInsert insertActor;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
        this.insertActor =
                new SimpleJdbcInsert(dataSource)
                        .withTableName("t_actor")
                        .usingGeneratedKeyColumns("id");
    public void add(Actor actor) {
        SqlParameterSource parameters = new BeanPropertySqlParameterSource(actor);
        Number newId = insertActor.executeAndReturnKey(parameters);
        actor.setId(newId.longValue());
    //  ... additional methods
}

Another option is the MapSqlParameterSource that resembles a Map but provides a more convenient addValue method that can be chained.

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    private SimpleJdbcInsert insertActor;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
        this.insertActor =
                new SimpleJdbcInsert(dataSource)
                        .withTableName("t_actor")
                        .usingGeneratedKeyColumns("id");
    public void add(Actor actor) {
        SqlParameterSource parameters = new MapSqlParameterSource()
                .addValue("first_name", actor.getFirstName())
                .addValue("last_name", actor.getLastName());
        Number newId = insertActor.executeAndReturnKey(parameters);
        actor.setId(newId.longValue());
    //  ... additional methods
}

As you can see, the configuration is the same; only the executing code has to change to use these alternative input classes.

The SimpleJdbcCall class leverages metadata in the database to look up names of in and out parameters, so that you do not have to declare them explicitly. You can declare parameters if you prefer to do that, or if you have parameters such as ARRAY or STRUCT that do not have an automatic mapping to a Java class. The first example shows a simple procedure that returns only scalar values in VARCHAR and DATE format from a MySQL database. The example procedure reads a specified actor entry and returns first_name , last_name , and birth_date columns in the form of out parameters.

CREATE PROCEDURE read_actor ( 
  IN in_id INTEGER, 
  OUT out_first_name VARCHAR(100), 
  OUT out_last_name VARCHAR(100), 
  OUT out_birth_date DATE) 
BEGIN 
  SELECT first_name, last_name, birth_date 
  INTO out_first_name, out_last_name, out_birth_date 
  FROM t_actor where id = in_id;
END;

The in_id parameter contains the id of the actor you are looking up. The out parameters return the data read from the table.

The SimpleJdbcCall is declared in a similar manner to the SimpleJdbcInsert . You should instantiate and configure the class in the initialization method of your data access layer. Compared to the StoredProcedure class, you don't have to create a subclass and you don't have to declare parameters that can be looked up in the database metadata. Following is an example of a SimpleJdbcCall configuration using the above stored procedure. The only configuration option, in addition to the DataSource , is the name of the stored procedure.

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    private SimpleJdbcCall procReadActor;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
        this.procReadActor =
                new SimpleJdbcCall(dataSource)
                        .withProcedureName("read_actor");
    public Actor readActor(Long id) {
        SqlParameterSource in = new MapSqlParameterSource()
                .addValue("in_id", id); 
        Map out = procReadActor.execute(in);
        Actor actor = new Actor();
        actor.setId(id);
        actor.setFirstName((String) out.get("out_first_name"));
        actor.setLastName((String) out.get("out_last_name"));
        actor.setBirthDate((Date) out.get("out_birth_date"));
        return actor;
    //  ... additional methods
}

The code you write for the execution of the call involves creating an SqlParameterSource containing the IN parameter. It's important to match the name provided for the input value with that of the parameter name declared in the stored procedure. The case does not have to match because you use metadata to determine how database objects should be referred to in a stored procedure. What is specified in the source for the stored procedure is not necessarily the way it is stored in the database. Some databases transform names to all upper case while others use lower case or use the case as specified.

The execute method takes the IN parameters and returns a Map containing any out parameters keyed by the name as specified in the stored procedure. In this case they are out_first_name, out_last_name and out_birth_date .

The last part of the execute method creates an Actor instance to use to return the data retrieved. Again, it is important to use the names of the out parameters as they are declared in the stored procedure. Also, the case in the names of the out parameters stored in the results map matches that of the out parameter names in the database, which could vary between databases. To make your code more portable you should do a case-insensitive lookup or instruct Spring to use a CaseInsensitiveMap from the Jakarta Commons project. To do the latter, you create your own JdbcTemplate and set the setResultsMapCaseInsensitive property to true . Then you pass this customized JdbcTemplate instance into the constructor of your SimpleJdbcCall . You must include the commons-collections.jar in your classpath for this to work. Here is an example of this configuration:

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcCall procReadActor;
    public void setDataSource(DataSource dataSource) {
        JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
        jdbcTemplate.setResultsMapCaseInsensitive(true);
        this.procReadActor =
                new SimpleJdbcCall(jdbcTemplate)
                        .withProcedureName("read_actor");
    //  ... additional methods
}

By taking this action, you avoid conflicts in the case used for the names of your returned out parameters.

You have seen how the parameters are deduced based on metadata, but you can declare then explicitly if you wish. You do this by creating and configuring SimpleJdbcCall with the declareParameters method, which takes a variable number of SqlParameter objects as input. See the next section for details on how to define an SqlParameter .

[Note] Note

Explicit declarations are necessary if the database you use is not a Spring-supported database. Currently Spring supports metadata lookup of stored procedure calls for the following databases: Apache Derby, DB2, MySQL, Microsoft SQL Server, Oracle, and Sybase. We also support metadata lookup of stored functions for: MySQL, Microsoft SQL Server, and Oracle.

You can opt to declare one, some, or all the parameters explicitly. The parameter metadata is still used where you do not declare parameters explicitly. To bypass all processing of metadata lookups for potential parameters and only use the declared parameters, you call the method withoutProcedureColumnMetaDataAccess as part of the declaration. Suppose that you have two or more different call signatures declared for a database function. In this case you call the useInParameterNames to specify the list of IN parameter names to include for a given signature.

The following example shows a fully declared procedure call, using the information from the preceding example.

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcCall procReadActor;
    public void setDataSource(DataSource dataSource) {
        JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
        jdbcTemplate.setResultsMapCaseInsensitive(true);
        this.procReadActor =
                new SimpleJdbcCall(jdbcTemplate)
                        .withProcedureName("read_actor")
                        .withoutProcedureColumnMetaDataAccess()
                        .useInParameterNames("in_id")
                        .declareParameters(
                                new SqlParameter("in_id", Types.NUMERIC),
                                new SqlOutParameter("out_first_name", Types.VARCHAR),
                                new SqlOutParameter("out_last_name", Types.VARCHAR),
                                new SqlOutParameter("out_birth_date", Types.DATE)
    //  ... additional methods
}

The execution and end results of the two examples are the same; this one specifies all details explicitly rather than relying on metadata.

To define a parameter for the SimpleJdbc classes and also for the RDBMS operations classes, covered in Section 12.6, “Modeling JDBC operations as Java objects” , use an SqlParameter or one of its subclasses. You typically specify the parameter name and SQL type in the constructor. The SQL type is specified using the java.sql.Types constants. We have already seen declarations like:

   new SqlParameter("in_id", Types.NUMERIC),
   new SqlOutParameter("out_first_name", Types.VARCHAR),

The first line with the SqlParameter declares an IN parameter. IN parameters can be used for both stored procedure calls and for queries using the SqlQuery and its subclasses covered in the following section.

The second line with the SqlOutParameter declares an out parameter to be used in a stored procedure call. There is also an SqlInOutParameter for InOut parameters, parameters that provide an IN value to the procedure and that also return a value.

[Note] Note

Only parameters declared as SqlParameter and SqlInOutParameter will be used to provide input values. This is different from the StoredProcedure class, which for backwards compatibility reasons allows input values to be provided for parameters declared as SqlOutParameter .

For IN parameters, in addition to the name and the SQL type, you can specify a scale for numeric data or a type name for custom database types. For out parameters, you can provide a RowMapper to handle mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType that provides an opportunity to define customized handling of the return values.

You call a stored function in almost the same way as you call a stored procedure, except that you provide a function name rather than a procedure name. You use the withFunctionName method as part of the configuration to indicate that we want to make a call to a function, and the corresponding string for a function call is generated. A specialized execute call, executeFunction, is used to execute the function and it returns the function return value as an object of a specified type, which means you do not have to retrieve the return value from the results map. A similar convenience method named executeObject is also available for stored procedures that only have one out parameter. The following example is based on a stored function named get_actor_name that returns an actor's full name. Here is the MySQL source for this function:

CREATE FUNCTION get_actor_name (in_id INTEGER)
RETURNS VARCHAR(200) READS SQL DATA 
BEGIN
  DECLARE out_name VARCHAR(200);
  SELECT concat(first_name, ' ', last_name)
    INTO out_name
    FROM t_actor where id = in_id;
  RETURN out_name;
END;

To call this function we again create a SimpleJdbcCall in the initialization method.

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    private SimpleJdbcCall funcGetActorName;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
        JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
        jdbcTemplate.setResultsMapCaseInsensitive(true);
        this.funcGetActorName =
                new SimpleJdbcCall(jdbcTemplate)
                        .withFunctionName("get_actor_name");
    public String getActorName(Long id) {
        SqlParameterSource in = new MapSqlParameterSource()
                .addValue("in_id", id); 
        String name = funcGetActorName.executeFunction(String.class, in);
        return name;
    //  ... additional methods
}

The execute method used returns a String containing the return value from the function call.

Calling a stored procedure or function that returns a result set is a bit tricky. Some databases return result sets during the JDBC results processing while others require an explicitly registered out parameter of a specific type. Both approaches need additional processing to loop over the result set and process the returned rows. With the SimpleJdbcCall you use the returningResultSet method and declare a RowMapper implementation to be used for a specific parameter. In the case where the result set is returned during the results processing, there are no names defined, so the returned results will have to match the order in which you declare the RowMapper implementations. The name specified is still used to store the processed list of results in the results map that is returned from the execute statement.

The next example uses a stored procedure that takes no IN parameters and returns all rows from the t_actor table. Here is the MySQL source for this procedure:

CREATE PROCEDURE read_all_actors()
BEGIN
 SELECT a.id, a.first_name, a.last_name, a.birth_date FROM t_actor a;
END;

To call this procedure you declare the RowMapper . Because the class you want to map to follows the JavaBean rules, you can use a ParameterizedBeanPropertyRowMapper that is created by passing in the required class to map to in the newInstance method.

public class JdbcActorDao implements ActorDao {
    private SimpleJdbcTemplate simpleJdbcTemplate;
    private SimpleJdbcCall procReadAllActors;
    public void setDataSource(DataSource dataSource) {
        this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
        JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
        jdbcTemplate.setResultsMapCaseInsensitive(true);
        this.procReadAllActors =
                new SimpleJdbcCall(jdbcTemplate)
                        .withProcedureName("read_all_actors")
                        .returningResultSet("actors",
                                ParameterizedBeanPropertyRowMapper.newInstance(Actor.class));
    public List getActorsList() {
        Map m = procReadAllActors.execute(new HashMap<String, Object>(0));
        return (List) m.get("actors");
    //  ... additional methods
}

The execute call passes in an empty Map because this call does not take any parameters. The list of Actors is then retrieved from the results map and returned to the caller.

The org.springframework.jdbc.object package contains classes that allow you to access the database in a more object-oriented manner. As an example, you can execute queries and get the results back as a list containing business objects with the relational column data mapped to the properties of the business object. You can also execute stored procedures and run update, delete, and insert statements.

[Note] Note

Many Spring developers believe that the various RDBMS operation classes described below (with the exception of the StoredProcedure class) can often be replaced with straight JdbcTemplate calls. Often it is simpler to write a DAO method that simply calls a method on a JdbcTemplate directly (as opposed to encapsulating a query as a full-blown class).

However, if you are getting measurable value from using the RDBMS operation classes, continue using these classes.

MappingSqlQuery is a reusable query in which concrete subclasses must implement the abstract mapRow(..) method to convert each row of the supplied ResultSet into an object of the type specified. The following example shows a custom query that maps the data from the t_actor relation to an instance of the Actor class.

public class ActorMappingQuery extends MappingSqlQuery<Actor> {
    public ActorMappingQuery(DataSource ds) {
        super(ds, "select id, first_name, last_name from t_actor where id = ?");
        super.declareParameter(new SqlParameter("id", Types.INTEGER));
        compile();
    @Override
    protected Actor mapRow(ResultSet rs, int rowNumber) throws SQLException {
        Actor actor = new Actor();
        actor.setId(rs.getLong("id"));
        actor.setFirstName(rs.getString("first_name"));
        actor.setLastName(rs.getString("last_name"));
        return actor;
}

The class extends MappingSqlQuery parameterized with the Actor type. The constructor for this customer query takes the DataSource as the only parameter. In this constructor you call the constructor on the superclass with the DataSource and the SQL that should be executed to retrieve the rows for this query. This SQL will be used to create a PreparedStatement so it may contain place holders for any parameters to be passed in during execution.You must declare each parameter using the declareParameter method passing in an SqlParameter . The SqlParameter takes a name and the JDBC type as defined in java.sql.Types . After you define all parameters, you call the compile() method so the statement can be prepared and later executed. This class is thread-safe after it is compiled, so as long as these instances are created when the DAO is initialized they can be kept as instance variables and be reused.

private ActorMappingQuery actorMappingQuery;
@Autowired
public void setDataSource(DataSource dataSource) {
    this.actorMappingQuery = new ActorMappingQuery(dataSource);
public Customer getCustomer(Long id) {
    return actorMappingQuery.findObject(id);
}

The method in this example retrieves the customer with the id that is passed in as the only parameter. Since we only want one object returned we simply call the convenience method findObject with the id as parameter. If we had instead a query that returned a list of objects and took additional parameters then we would use one of the execute methods that takes an array of parameter values passed in as varargs.

public List<Actor> searchForActors(int age, String namePattern) {
    List<Actor> actors = actorSearchMappingQuery.execute(age, namePattern);
    return actors;
}

The StoredProcedure class is a superclass for object abstractions of RDBMS stored procedures. This class is abstract , and its various execute(..) methods have protected access, preventing use other than through a subclass that offers tighter typing.

The inherited sql property will be the name of the stored procedure in the RDBMS.

To define a parameter for the StoredProcedure class, you use an SqlParameter or one of its subclasses. You must specify the parameter name and SQL type in the constructor like in the following code snippet. The SQL type is specified using the java.sql.Types constants.

   new SqlParameter("in_id", Types.NUMERIC),
   new SqlOutParameter("out_first_name", Types.VARCHAR),

The first line with the SqlParameter declares an IN parameter. IN parameters can be used for both stored procedure calls and for queries using the SqlQuery and its subclasses covered in the following section.

The second line with the SqlOutParameter declares an out parameter to be used in the stored procedure call. There is also an SqlInOutParameter for I nOut parameters, parameters that provide an in value to the procedure and that also return a value.

For i n parameters, in addition to the name and the SQL type, you can specify a scale for numeric data or a type name for custom database types. For out parameters you can provide a RowMapper to handle mapping of rows returned from a REF cursor. Another option is to specify an SqlReturnType that enables you to define customized handling of the return values.

Here is an example of a simple DAO that uses a StoredProcedure to call a function, sysdate() ,which comes with any Oracle database. To use the stored procedure functionality you have to create a class that extends StoredProcedure . In this example, the StoredProcedure class is an inner class, but if you need to reuse the StoredProcedure you declare it as a top-level class. This example has no input parameters, but an output parameter is declared as a date type using the class SqlOutParameter . The execute() method executes the procedure and extracts the returned date from the results Map . The results Map has an entry for each declared output parameter, in this case only one, using the parameter name as the key.

import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.sql.DataSource;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;
public class StoredProcedureDao {
    private GetSysdateProcedure getSysdate;
    @Autowired
    public void init(DataSource dataSource) {
        this.getSysdate = new GetSysdateProcedure(dataSource);
    public Date getSysdate() {
        return getSysdate.execute();
    private class GetSysdateProcedure extends StoredProcedure {
        private static final String SQL = "sysdate";
        public GetSysdateProcedure(DataSource dataSource) {
            setDataSource(dataSource);
            setFunction(true);
            setSql(SQL);
            declareParameter(new SqlOutParameter("date", Types.DATE));
            compile();
        public Date execute() {
            // the 'sysdate' sproc has no input parameters, so an empty Map is supplied...
            Map<String, Object> results = execute(new HashMap<String, Object>());
            Date sysdate = (Date) results.get("date");
            return sysdate;    
}

The following example of a StoredProcedure has two output parameters (in this case, Oracle REF cursors).

import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.object.StoredProcedure;
import javax.sql.DataSource;
import java.util.HashMap;
import java.util.Map;
public class TitlesAndGenresStoredProcedure extends StoredProcedure {
    private static final String SPROC_NAME = "AllTitlesAndGenres";
    public TitlesAndGenresStoredProcedure(DataSource dataSource) {
        super(dataSource, SPROC_NAME);
        declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
        declareParameter(new SqlOutParameter("genres", OracleTypes.CURSOR, new GenreMapper()));
        compile();
    public Map<String, Object> execute() {
        // again, this sproc has no input parameters, so an empty Map is supplied
        return super.execute(new HashMap<String, Object>());
}

Notice how the overloaded variants of the declareParameter(..) method that have been used in the TitlesAndGenresStoredProcedure constructor are passed RowMapper implementation instances; this is a very convenient and powerful way to reuse existing functionality. The code for the two RowMapper implementations is provided below.

The TitleMapper class maps a ResultSet to a Title domain object for each row in the supplied ResultSet :

import org.springframework.jdbc.core.RowMapper;
import java.sql.ResultSet;
import java.sql.SQLException;
import com.foo.domain.Title;
public final class TitleMapper implements RowMapper<Title> {
    public Title mapRow(ResultSet rs, int rowNum) throws SQLException {
        Title title = new Title();
        title.setId(rs.getLong("id"));
        title.setName(rs.getString("name"));
        return title;
}

The GenreMapper class maps a ResultSet to a Genre domain object for each row in the supplied ResultSet .

import org.springframework.jdbc.core.RowMapper;
import java.sql.ResultSet;
import java.sql.SQLException;
import com.foo.domain.Genre;
public final class GenreMapper implements RowMapper<Genre> {
    public Genre mapRow(ResultSet rs, int rowNum) throws SQLException {
        return new Genre(rs.getString("name"));
}

To pass parameters to a stored procedure that has one or more input parameters in its definition in the RDBMS, you can code a strongly typed execute(..) method that would delegate to the superclass' untyped execute(Map parameters) method (which has protected access); for example:

import oracle.jdbc.OracleTypes;
import org.springframework.jdbc.core.SqlOutParameter;
import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.StoredProcedure;
import javax.sql.DataSource;
import java.sql.Types;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
public class TitlesAfterDateStoredProcedure extends StoredProcedure {
    private static final String SPROC_NAME = "TitlesAfterDate";
    private static final String CUTOFF_DATE_PARAM = "cutoffDate";
    public TitlesAfterDateStoredProcedure(DataSource dataSource) {
        super(dataSource, SPROC_NAME);
        declareParameter(new SqlParameter(CUTOFF_DATE_PARAM, Types.DATE);
        declareParameter(new SqlOutParameter("titles", OracleTypes.CURSOR, new TitleMapper()));
        compile();
    public Map<String, Object> execute(Date cutoffDate) {
        Map<String, Object> inputs = new HashMap<String, Object>();
        inputs.put(CUTOFF_DATE_PARAM, cutoffDate);
        return super.execute(inputs);
}

Common problems with parameters and data values exist in the different approaches provided by the Spring Framework JDBC.

You can store images, other binary objects, and large chunks of text. These large object are called BLOB for binary data and CLOB for character data. In Spring you can handle these large objects by using the JdbcTemplate directly and also when using the higher abstractions provided by RDBMS Objects and the SimpleJdbc classes. All of these approaches use an implementation of the LobHandler interface for the actual management of the LOB data. The LobHandler provides access to a LobCreator class, through the getLobCreator method, used for creating new LOB objects to be inserted.

The LobCreator/LobHandler provides the following support for LOB input and output:

The next example shows how to create and insert a BLOB. Later you will see how to read it back from the database.

This example uses a JdbcTemplate and an implementation of the AbstractLobCreatingPreparedStatementCallbac k . It implements one method, setValues . This method provides a LobCreator that you use to set the values for the LOB columns in your SQL insert statement.

For this example we assume that there is a variable, lobHandle r , that already is set to an instance of a DefaultLobHandler . You typically set this value through dependency injection.

Now it's time to read the LOB data from the database. Again, you use a JdbcTemplate with the same instance variable l obHandler and a reference to a DefaultLobHandler .

When you call stored procedures you can sometimes use complex types specific to the database. To accommodate these types, Spring provides a SqlReturnType for handling them when they are returned from the stored procedure call and SqlTypeValue when they are passed in as a parameter to the stored procedure.

Here is an example of returning the value of an Oracle STRUCT object of the user declared type ITEM_TYPE . The SqlReturnType interface has a single method named getTypeValue that must be implemented. This interface is used as part of the declaration of an SqlOutParameter .

final TestItem - new TestItem(123L, "A test item", 
        new SimpleDateFormat("yyyy-M-d").parse("2010-12-31"););
declareParameter(new SqlOutParameter("item", OracleTypes.STRUCT, "ITEM_TYPE",
    new SqlReturnType() {
      public Object getTypeValue(CallableStatement cs, int colIndx, int sqlType, String typeName) 
          throws SQLException {
        STRUCT struct = (STRUCT)cs.getObject(colIndx);
        Object[] attr = struct.getAttributes();
        TestItem item = new TestItem();
        item.setId(((Number) attr[0]).longValue());
        item.setDescription((String)attr[1]);
        item.setExpirationDate((java.util.Date)attr[2]);
        return item;
    }));

You use the SqlTypeValue to pass in the value of a Java object like TestItem into a stored procedure. The SqlTypeValue interface has a single method named createTypeValue that you must implement. The active connection is passed in, and you can use it to create database-specific objects such as StructDescriptor s, as shown in the following example, or ArrayDescriptor s.

final TestItem - new TestItem(123L, "A test item", 
        new SimpleDateFormat("yyyy-M-d").parse("2010-12-31"););
SqlTypeValue value = new AbstractSqlTypeValue() {
  protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException {
    StructDescriptor itemDescriptor = new StructDescriptor(typeName, conn);
    Struct item = new STRUCT(itemDescriptor, conn,
        new Object[] {
            testItem.getId(),
            testItem.getDescription(),
            new java.sql.Date(testItem.getExpirationDate().getTime())
    return item;
};

This SqlTypeValue can now be added to the Map containing the input parameters for the execute call of the stored procedure.

Another use for the SqlTypeValue is passing in an array of values to an Oracle stored procedure. Oracle has its own internal ARRAY class that must be used in this case, and you can use the SqlTypeValue to create an instance of the Oracle ARRAY and populate it with values from the Java ARRAY .

final Long[] ids = new Long[] {1L, 2L};
SqlTypeValue value = new AbstractSqlTypeValue() {
  protected Object createTypeValue(Connection conn, int sqlType, String typeName) throws SQLException {
    ArrayDescriptor arrayDescriptor = new ArrayDescriptor(typeName, conn);
    ARRAY idArray = new ARRAY(arrayDescriptor, conn, ids);
    return idArray;
};

The org.springframework.jdbc.datasource.embedded package provides support for embedded Java database engines. Support for HSQL , H2 , and Derby is provided natively. You can also use an extensible API to plug in new embedded database types and DataSource implementations.

The org.springframework.jdbc.datasource.init package provides support for initializing an existing DataSource . The embedded database support provides one option for creating and initializing a DataSource for an application, but sometimes you need to initialize an instance running on a server somewhere.

If you want to initialize a database and you can provide a reference to a DataSource bean, use the initialize-database tag in the spring-jdbc namespace:

<jdbc:initialize-database data-source="dataSource">
  <jdbc:script location="classpath:com/foo/sql/db-schema.sql"/>
  <jdbc:script location="classpath:com/foo/sql/db-test-data.sql"/>
</jdbc:initialize-database>

The example above runs the two scripts specified against the database: the first script is a schema creation, and the second is a test data set insert. The script locations can also be patterns with wildcards in the usual ant style used for resources in Spring (e.g. classpath*:/com/foo/**/sql/*-data.sql ). If a pattern is used the scripts are executed in lexical order of their URL or filename.

The default behaviour of the database initializer is to unconditionally execute the scripts provided. This will not always be what you want, for instance if running against an existing database that already has test data in it. The likelihood of accidentally deleting data is reduced by the commonest pattern (as shown above) that creates the tables first and then inserts the data - the first step will fail if the tables already exist.

However, to get more control over the creation and deletion of existing data, the XML namespace provides a couple more options. The first is flag to switch the initialization on and off. This can be set according to the environment (e.g. to pull a boolean value from system properties or an environment bean), e.g.

<jdbc:initialize-database data-source="dataSource"
    enabled="#{systemProperties.INITIALIZE_DATABASE}">
  <jdbc:script location="..."/>
</jdbc:initialize-database>

The second option to control what happens with existing data is to be more tolerant of failures. To this end you can control the ability of the initializer to ignore certain errors in the SQL it executes from the scripts, e.g.

<jdbc:initialize-database data-source="dataSource" ignore-failures="DROPS">
  <jdbc:script location="..."/>
</jdbc:initialize-database>

In this example we are saying we expect that sometimes the scripts will be run against an empty dtabase and there are some DROP statements in the scripts which would therefore fail. So failed SQL DROP statements will be ignored, but other failures will cause an exception. This is useful if your SQL dialect doesn't support DROP ... IF EXISTS (or similar) but you want to unconditionally remove all test data before re-creating it. In that case the first script is usually a set of drops, followed by a set of CREATE statements.

The ignore-failures option can be set to NONE (the default), DROPS (ignore failed drops) or ALL (ignore all failures).

If you need more control than you get from the XML namespace, you can simply use the DataSourceInitializer directly, and define it as a component in your application.

A large class of applications can just use the database initializer with no further complications: those that do not use the database until after the Spring context has started. If your application is not one of those then you might need to read the rest of this section.

The database initializer depends on a data source instance and runs the scripts provided in its initialization callback (c.f. init-method in an XML bean definition or InitializingBean ). If other beans depend on the same data source and also use the data source in an initialization callback then there might be a problem because the data has not yet been initialized. A common example of this is a cache that initializes eagerly and loads up data from the database on application startup.

To get round this issue you two options: change your cache initialization strategy to a later phase, or ensure that the database initializer is initialized first.

The first option might be easy if the application is in your control, and not otherwise. Some suggestions for how to implement this are

The second option can also be easy. Some suggestions on how to implement this are