添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
聪明的金针菇  ·  PyQt - QFileDialog - ...·  1 年前    · 
威武的山羊  ·  二、position:relative和po ...·  2 年前    · 
近视的鸭蛋  ·  Verilog ...·  2 年前    · 
无邪的楼房  ·  Django REST ...·  2 年前    · 
:
twitter line
研究生: 阮彥鈞
研究生(外文): Yen-Chun Luan
論文名稱: 慢性肩部或下背疼痛之大專舉重選手抓舉動作的運動學、肌肉活化與槓鈴軌跡分析
論文名稱(外文): Kinematics, Muscle Activity and Barbell Trajectory of The Snatch among Collegiate Weightlifters with Chronic Shoulder or Low Back Pain
指導教授: 施怡芬 施怡芬引用關係
指導教授(外文): Yi-Fen Shih
學位類別: 碩士
校院名稱: 國立陽明大學
系所名稱: 物理治療暨輔助科技學系
學門: 醫藥衛生學門
學類: 復健醫學學類
論文種類: 學術論文
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 194
中文關鍵詞: 舉重運動傷害 慢性疼痛 動作分析 動作控制 功能性動作篩檢
外文關鍵詞: weightlifting chronic pain motion analysis movement control functional movement screen
相關次數:
  • 被引用 被引用:0
  • 點閱 點閱:470
  • 評分 評分:
  • 下載 下載:15
  • 收藏至我的研究室書目清單 書目收藏:0
研究背景:慢性肩關節與下背疼痛是舉重選手最常出現的運動傷害之一,舉重選手需要將下肢力量透過軀幹與上肢傳到槓鈴以完成動作,肩背受傷可能影響動力鍊的傳遞,進而造成運動員無法參與練習或影響運動表現。過去舉重相關研究多探討在不同重量的抓舉、成功與否的抓舉、或是不同競賽層級選手的抓舉之中,選手與槓鈴的動作學、動力學、及肌肉活化程度的比較,尚未有研究分析肩背受傷舉重選手抓舉動作之生物力學,亦無文獻探討關於舉重受傷的危險因子。研究目的:比較有無慢性肩部疼痛、有無慢性下背疼痛之大專舉重選手之(一)抓舉動作的動作學、槓鈴軌跡、與肌肉活化程度;(二)功能性動作篩檢、肩部動作控制能力、腰部動作控制能力和肌肉長度之差異。研究設計:探索型、橫斷面研究。研究方法:本研究收取臺北市立大學天母校區與國立體育大學共36位大專舉重運動員(21位男性與15位女性,平均年齡為20.06歲,身高為165.83公分,體重為78.56公斤),依據過去一年內有無大於三個月的慢性肩部疼痛或下背疼痛,將其分為肩痛組12位與無肩痛組23位,或背痛組14位與無背痛組21位。本實驗使用攜帶式生物力學實驗室(Noraxon Portable Lab, Noraxon USA Inc, Scottsdale, Ariz),其中包括慣性測量單元三維動作分析系統(Noraxon myoMOTION)、無線表面肌電圖(Noraxon i-DTS wireless electromyography system)與攝影機,慣性測量單元感應器放置於頸椎第七節棘突、胸椎第十二節棘突、薦椎第二節、兩側上臂外側、雙側大腿和小腿外側、足背,表面肌電圖收取上斜方肌、下斜方肌、肱二頭肌、中三角肌、股外側肌、股二頭肌、豎脊肌、臀大肌,進行儀器校正後進行85%最大肌力抓舉之動作學共三次、肌電圖與槓鈴軌跡的資料收取,並以最大等長肌力測試以標準化肌電圖訊號。其他理學檢查使用功能性動作篩檢、肩部動作控制測試、腰部動作控制能力、肌肉長度測試。功能性動作篩檢計算各項目的分數、總分和兩側分數不對稱性;肩部動作控制測試包括肩部動作過程中之肩胛骨或肱骨的失控動作;腰部動作控制能力評估腰髖動作中是否出現過多的腰椎屈曲或伸直的失控動作;肌肉長度測試包括腳踝活動度、股直肌、膕旁肌、髖屈肌、髖外展肌、胸小肌、提肩胛肌與闊背肌。統計分析:基本資料、功能性動作篩檢、動作控制測試、肌肉長度測試使用獨立T檢定與卡方檢定進行組間比較,抓舉動作資料依據膝關節屈曲角度與槓鈴高度分為五個分期:提鈴期、引膝期、發力期、騰空期、支撐期,動作中之上下肢與軀幹各肌肉最大活化程度、脊椎和上下肢於每個動作平面之最大及最小活動角度、最大正負方向活動角速度、肢段之三軸加速度、槓鈴水平及垂直正負方向最大速度及加速度,以及上述變數發生於各時期的時間點,以二因子變異數比較分析(two-way ANOVA),並以用最小顯著差異性測驗校正(least significant difference, LSD),統計顯著水準設為0.05。結果:(一)肩痛組與無肩痛組比較:二因子變異數分析後發現有22個變數出現組別分期交互作用、22個變數於組別主效果出現顯著差異,事後分析後發現於提鈴期,肩痛組較晚達到患側踝關節矢狀面正向最大角速度(p=0.038)、較低的最大健側肩胛骨向前加速度(p=0.031)。於引膝期,肩痛組較晚達到患側踝關節矢狀面正向最大角速度(p=0.026)且較早達到健側肩關節矢狀面正向最大角速度(p=0.014),且其最大健側肩胛骨向前加速度較低(p=0.043)、引膝期的分期時間較長(p=0.004)。發力期中肩痛組出現較高的最大骨盆向後加速度(p=0.041)、最大健側上臂向後加速度(p=0.025)、及較高的患側肩關節橫狀面正向最大角速度(p=0.006),且較早達到胸椎矢狀面負向最大角速度(p=0.015)。騰空期中,肩痛組出現較高的患側踝關節矢狀面正向最大角度(p=0.003)及患側肩關節橫狀面正向最大角速度(p=0.049),且有較低的最大健側肩胛骨整體加速度(p=0.041)及患側肩關節矢狀面負向最大角速度(p=0.031);此外肩痛組也較早達到最大健側小腿向前加速度(p=0.015)、胸椎橫狀面負向最大角度(p=0.007)、健側肩關節橫狀面正向最大角速度(p=0.012),而較晚達到健側肩關節橫狀面負向最大角速度(p=0.041)。肩痛組於支撐期中出現較高的患側踝關節矢狀面負向最大角度(p=0.032)及最大患側上臂向上加速度(p=0.035),較晚達到患側髖關節橫狀面負向最大角度(p=0.015),且健側肩關節橫狀面正向最大角速度(p=0.014)較無肩痛組低。理學檢查中,肩痛組於功能性動作篩檢之中,患側肩膀活動度(p=0.048)、肩膀活動度總分(p=0.016)較低,且有較高的直線前蹲不對稱(p=0.044)、肩膀活動度不對稱分數(p=0.006),而在肩部動作控制於肩屈曲動作中,容易出現失控的肩胛前傾(p=0.0012)與翼狀肩胛(p=0.003),於肩外展動作中容易出現失控的肩胛上提(p=0.040)與肩胛前傾(p<0.001),並且有較高的肩部屈曲失控動作比率(p<0.001)、肩部外展失控動作比率(p<0.001)、肩部總合失控動作比率(p<0.001) ,而肌肉長度測試則無差異。(二)背痛與無背痛比較的二因子變異數分析後發現有19個變數出現組別分期交互作用、22個變數於組別主效果出現顯著差異。事後分析後發現,背痛組於提鈴期較早達到最大非慣用側大腿向外加速度(p=0.006) 及最大慣用側足部向上加速度(p=0.038),較晚達到最大慣用側足部向前加速度(p=0.003)及腰椎橫狀面正向最大角度(p=0.033)。引膝期時,下背痛組的最大非慣用側上臂向前加速度(p=0.008)及最大非慣用側上臂向外加速度(p=0.04)較無背痛組低。於發力期中,背痛組僅較非背痛組早達腰椎橫狀面正向最大角度(p=0.04);但於騰空期則有較高的最大慣用側大腿整體加速度(p=0.031)及向前加速度(p=0.033),與較高的最大非慣用側大腿向上加速度(p=0.028)、最大非慣用側上臂向前加速度(p=0.015)、慣用側肩關節橫狀面負向最大角加速度(p=0.001) 、與最大非慣用側上臂向外加速度(p=0.032),且其最小非慣用側膝屈曲角加速度(p=0.007)較低;此外,背痛組較早達到慣用側肩關節橫狀面負向最大角加速度(p=0.001)、較晚達到慣用側肩關節橫狀面正向最大角加速度(p=0.012)。支撐期中,下背痛組較早達到最大非慣用側大腿向後加速度(p<0.001)。在功能性動作篩檢中,背痛組的深蹲分數(p=0.015)與總分(p=0.025)較低,腰部動作控制於站到坐(p=0.013)、站姿胸椎伸直測試(p=0.038)中出現失控動作,並且有較高的腰部屈曲失控動作比率(p=0.007)、腰部伸直失控動作比率(p=0.025)、腰部總合失控動作比率(p=0.003),而肌肉長度測試則無差異。結論:(一)有慢性肩部疼痛的舉重運動員於發力期時,下肢發力模式較不理想,包括骨盆向前加速度較低、引膝期之的減速過多、胸椎伸直提前出現。於過肩支撐的動作中(騰空期、支撐期),有較大的肩關節伸直速度、較大的上臂向上加速度且增加肩水平外展速度的動作模式,且在功能性動作篩檢之中患側肩膀活動度的分數較低,屈曲、外展之動態肩胛控制較差。於整個舉重動作過程中皆出現兩側下肢動作的不對稱,上肢不對稱性主要發生在提鈴期與引膝期,功能性動作篩檢中的患側肩膀活動度分數較低,並且肩膀活動度、直線前蹲較為不對稱。(二)有慢性下背疼痛的舉重運動員於提鈴期時,較晚出現最大腰椎向慣用側旋轉角度,而於發力期時則是較早出現最大腰椎向慣用側旋轉角度,於引膝期時較晚出現豎脊肌最大活化程度、於支撐期時較早出現豎脊肌最大活化程度,於騰空期與支撐期出現較高的上臂和大腿肢段加速度,而上臂和大腿肢段加速度的兩側不對稱性則是發生提鈴期、引膝期、騰空期與支撐期。此外,功能性篩檢之中的深蹲分數較低,代表過頭深蹲的動作品質較差,較低的功能性篩檢總分可能代表核心肌耐力不足、動作中容易出現過多的腰椎動作,而關於腰部動作控制測試,站到坐、站姿胸椎伸直的控制能力較差。臨床應用:於舉重專項訓練時,可觀察舉重運動員之動作、槓鈴軌跡等,於指導上減少動作中的傷害危險因子如發力的技巧、支撐時的患側肩部屈曲和水平外展的角速度、腰椎旋轉角度與豎脊肌的時序、整體動作過程中的上下肢不對稱性。在面對舉重運動員之慢性運動傷害時,可針對肩部屈曲與外展、腰部站到坐和站姿胸椎伸直等動作控制加以評估,並注意功能性動作篩檢中總分、肩膀活動度、直線前蹲、深蹲的分數及觀察兩側之不對稱性,以減少發生慢性肩部與下背疼痛的發生。關鍵字:舉重運動傷害、慢性疼痛、動作分析、動作控制、功能性動作篩檢
Background: Chronic shoulder and low back pain are the most common injuries in weightlifters. Because weightlifting requires an explosive force transmitted from the lower extremity kinetic chain through the trunk and upper limbs to the barbell, any injury in the chain would result in a huge impact on the weightlifting performance and the tissues bearing the load. Previous studies mainly examined the biomechanical characteristics of the snatch in different loading conditions or in different levels of weightlifters, or compared the characteristics between successful or unsuccessful lifts. However, the snatch biomechanics in weightlifters with chronic shoulder or low back pain have not been investigated before. In addition, no study has examined the musculoskeletal risk factors for chronic weightlifting injuries. Purpose: To investigate (1) the differences in kinematics, muscle activity and barbell trajectory during the snatch, and (2) the differences in Functional Movement Screen (FMS), motor control tests and muscle length tests between collegiate weightlifters with and without chronic shoulder pain or low back pain. Method: This is an exploratory, cross-sectional study. Thirty-six collegiate weightlifters (21 males and 15 females, age: 20.06 years, height: 165.83cm, weight: 78.56kg) from University of Taipei or National Taiwan Sport University were recruited in our study. Participants were divided into chronic shoulder pain group (SDP) or non-shoulder pain group (nSDP), and chronic low back pain group (LBP) or non-low back pain group (nLBP). The snatch kinematics, muscle activation, and barbell trajectory were recorded during three repetitions of the 85% self-reported 1-RM (repetition maximum) snatches using the Noraxon myoMOTIONTM System (Noraxon USA Inc, Scottsdale, Ariz). The IMU (inertial measurement unit) sensors were placed at the spinous processes of the C7, T12, S2 of, the lateral aspect of the upper arm, the thigh, shin, and the dorsum of the foot. The EMG data were recorded from the upper trapezius, lower trapezius, biceps brachii, middle deltoid, erextor spinae, biceps femoris, vastus lateralis, gluteus maximus muscles (Noraxon i-DTS wireless electromyography systems). Participants were also evaluated for their movement control ability using the FMS and motor control tests, and for their flexibility by standard muscle length tests. FMS raw score of each testing item, total score, and asymmetry were calculated. Uncontrolled movement of scapula and humerus, and lumbar spine were evaluated during shoulder and lumbopelvic movement tests, and the UCM ratios were calculated. Muscle length tests included ankle dorsiflexion range of motion (ROM), rectus femoris, modified Thomas test, hamstrings, pectoralis minor, levator scapulae, latissimuss dorsi. Demographic data were analyzed by the independent t test and chi-square test. Kinematic data, EMG data and barbell trajectory were divided into five phases: first pull (1P), transition (Tr), second pull (2P), turnover (TO) and catch (Ct), and the group comparisons were assessed by the two-way analysis of variance (ANOVA), with the least significant difference (LSD). Results of the FMS, motor control tests and muscle length tests were compared between groups using the independent t test and chi-square tests. The level of significance was set at p< 0.05. Result: (1) Comparisons between weightlifters with and without shoulder pain. The 2-way ANOVA showed group*phase interactions in 22 parameters. The post-hoc tests indicated that the SDP group had longer transition phase (p=0.004). During 1P, SDP group had delayed maximal positive angular velocity in sagittal plane of affected ankle (p=0.038) and lower maximum scapular anterior acceleration on the unaffected side (p=0.031). In Tr, the SDP group had lower maximum scapular anterior acceleration on the unaffected side (p=0.043), and their maximal positive angular velocity in sagittal plane of affected ankle (p=0.026) was delayed, and the maximum positive angular velocity in sagittal plane of unaffected shoulder occurred earlier (p=0.014). In 2P, the SDP group had higher pelvic posterior acceleration (p=0.041), maximum upper arm posterior acceleration on unaffected side (p=0.025), maximum positive angular velocity in horizontal plane of affected shoulder (p=0.006), and the maximum negative angular velocity in sagittal plane of thoracic spine (p=0.015) occurred earlier than the nSDP group. In TO, the SDP group showed higher positive angle in saggital plane of affected ankle (p=0.003) and maximum positive angular velocity in horizontal plane of affected shoulder (p=0.049), and lower maximum scapular general acceleration on the unaffected side (p=0.041) and maximum negative angular velocity in sagittal plane of affected shoulder (p=0.031). The SDP group also had an earlier onset for the the maximum shin anterior acceleration (p=0.015), the minimum thoracic rotation range of motion (ROM) (p=0.007), the maximum positive angular velocity in horizontal plane of unaffected shoulder (p=0.012), and a delayed occurrence of the maximum negative angular velocity in horizontal plane of unaffected shoulder (p=0.041). In Ct, the SDP group had higher maximal negative angle in saggital plane of affected ankle (p=0.032) and maximum upper arm superior acceleration on the affected side (p=0.035), and lower maximum positive angular velocity in horizontal plane of unaffected shoulder (p=0.014). The maximal negative angle in horizontal plane of affected hip (p=0.015) was delayed in the SDP group. For the movement control, the SDP group showed lower shoulder mobility score on the affected side (p=0.048), lower shoulder mobility final score (p=0.016), higher shoulder mobility asymmetry (p=0.006) and higher inline lunge asymmetry (p=0.044) in FMS testing. The SDP group also revealed poorer shoulder flexion control with scapula uncontrolled anterior tilt (p=0.012) and winging (p=0.003), poorer shoulder abduction control with scapula uncontrolled anterior tilt (p<0.001) and elevation (p=0.040), and higher uncontrolled movement ratio of the shoulder flexion (p<0.001), shoulder abduction (p<0.001) and total shoulder movement (p<0.001). No significant difference was found in muscle length test. (2) Comparisons between weightlifters with and without chronic low back pain. The 2-way ANOVA showed 22 parameters having group*phase interactions. The psot-hoc tests indicated that during 1P, the LBP group had an earlier onset of the maximum thigh lateral acceleration on the non-dominant side (NDS) (p=0.006) and maximum foot superior acceleration on the dominant side (DS) (p=0.038), and a delayed onset of the maximum foot anterior acceleration on the DS (p=0.003) and the maximum positive range in horizontal plane of lumbar spine (p=0.033). In Tr, the LBP group had lower upper arm anterior acceleration on the NDS (p=0.008) and maximum upper arm lateral acceleration on the NDS (p=0.04). In 2P, the LBP group showed an earlier onset of the maximal positive range in horizontal plane of lumbar spine (p=0.04). In TO, the LBP group had higher maximum thigh general acceleration on the DS (p=0.031), maximum thigh anterior acceleration on the DS (p=0.033), maximum thigh superior acceleration on the NDS (p=0.028), maximum upper arm lateral acceleration on NDS (p=0.032), and maximum upper arm anterior acceleration on NDS (p=0.015); and lower maximal negative angular acceleration in the sagittal plane of NDS knee (p=0.007). The LBP group also had an earlier onset of the maximal negative angular acceleration in the horizontal plane of DS shoulder (p=0.001) and a delayed onset of the maximal positive angular acceleration in the horizontal plane of DS shoulder (p=0.012). In Ct, the LBP group showed an earlier onset of the maximum thigh posterior acceleration on the ND (p<0.001). For the movement control testing, the LBP group had lower squat score (p=0.015) and lower total score (p=0.025) in the FMS testing. The LBP group also demonstrated poorer lumbar flexion control of the ischial weight-bearing test (p=0.013) and poorer lumbar extension control during the standing thoracic extension test (p=0.038), and higher uncontrolled movement ratios of the lumbar flexion (p=0.007), lumbar extension (p=0.025) and total lumbar movement (p=0.003). No significant difference was found in the muscle length testing. Conclusion: (1) The SDP group might present poor power production with lower pelvic anterior acceleration during 2P owing to an earlier thoracic extension movement. In TO and Ct, the affected shoulder had less flexion velocity and increased horizontal abduction velocity during the overhead movement in the SDP group. The poor shoulder flexion and abduction motor control, and shoulder mobility might be related to the altered overhead movement. During the whole process of snatch, the SDP group showed asymmetrical movement of the upper and lower extremities, which was consistent to the finding of the asymmetrical shoulder mobility and inline lunge in the FMS testing. (2) The LBP group had altered lumbar rotation sequence and erector spinae muscle firing sequence, along with higher upper arm and thigh segament acceleration in the TO and Ct and asymmetrical upper arm and thigh segament acceleration in 1P, Tr, TO and Ct. Lower total score and the score of the squat in FMS, and poor lumbar flexion and extension motor control, especially in stand to sit and standing thoracic spine extension, indicated that the LBP group had poor quality of overhead squat movement pattern. Clinical Relevance: To minimize the risk of weightlifting injury, coaches can focus more on reducing asymmetrical movement of upper or lower extrimities, altered lumbar rotation ROM and erector spinae activation sequence, and compensational shoulder flexion and horizontal abduction velocity on the affected side while instructing collegiate weightlifters. Clinicians may consider adding motor control tests and functional movement assessment when evaluating collegiate weightlifters, with special focuses on shoulder flexion and abduction test, ischial weight-bearing sit and standing thoracic extension in lumbar motor control test, score and asyemmtry of shoulder mobility, inline lunge, deep squat and total score in the FMS. Key word: weightlifting, chronic pain, motion analysis, movement control, functional movement screen
目錄
謝誌 I
中文摘要 II
英文摘要 VII
目錄 I
表目錄 III
圖目錄 V
附錄目錄 IX
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究假設 3
第四節 重要性 3
第二章 文獻回顧 4
第ㄧ節 抓舉運動中,運動學、動力學、槓鈴軌跡與肌肉活化分析 4
第二節 舉重運動傷害 8
第三節 動作控制策略與慢性疼痛之關聯性 11
第四節 文獻回顧之綜合探討與研究目的 14
第三章 研究方法 15
第一節 研究設計與研究架構 15
第二節 研究材料與研究方法 15
第三節 資料處理與分析方法 30
第四章 結果 33
第一節 受試者基本資料 33
第二節 抓舉生物力學分析 35
第三節 功能性動作篩檢 42
第四節 動作控制測試 43
第六節 肌肉長度測試 45
第五章 討論 46
第一節 肩痛組與無肩痛組之比較 49
第二節 背痛組與無背痛組之比較 60
第三節 臨床運用 67
第四節 研究限制與未來研究方向 67
第六章 結論 70


表目錄
表1、受試者基本資料:肩痛組與無肩痛組 81
表2、過去一年之慢性疼痛分數:肩痛組與無肩痛組 82
表3、受試者基本資料:背痛組與無背痛組 83
表4、過去一年之慢性疼痛分數:背痛組與無背痛組 84
表5、肩痛組與無肩痛組抓舉生物力學比較:組別分期交互作用顯著參數列表(雙因子變異數分析) 85
表6、肩痛組與無肩痛組抓舉生物力學比較:組別主效果顯著參數列表(雙因子變異數分析) 87
表7、肩痛組與無肩痛組抓舉生物力學比較:顯著參數列表(單因子變異數分析) 89
表8、肩痛組與無肩痛組抓舉生物力學事後分析比較(最小顯著差異性測驗) 90
表9、背痛組與無背痛組抓舉生物力學比較:組別分期交互作用顯著參數列表(雙因子變異數分析) 98
表10、背痛組與無背痛組抓舉生物力學比較:組別主效果顯著參數列表(雙因子變異數分析) 100
表11、背痛組與無背痛組組抓舉生物力學事後分析比較(最小顯著差異性測驗) 102
表12、肩痛組與無肩痛組功能性動作篩檢比較 109
表13、肩痛組與無肩痛組功能性動作篩檢之兩側不對稱性比較 111
表14、肩痛組與無肩痛組肌肉長度測試比較 112
表15、肩痛組與無肩痛組肩部動作控制測試比較 114
表16、背痛組與無背痛組功能性動作篩檢比較 116
表17、背痛組與無背痛組功能性動作篩檢之兩側不對稱性比較 118
表18、背痛組與無背痛組肌肉長度測試比較 119
表19、背痛組與無背痛組腰部動作控制測試比較 121


圖目錄
圖 1、抓舉動作分期 122
圖 2、槓鈴軌跡分類 123
圖 3、肩關節及髖關節的關節活動角度換算公式 124
圖 4、研究流程圖 125
圖 5、攜帶式生物力學實驗室 126
圖 6、感應器設置(正面) 127
圖 7、感應器設置(背面) 128
圖 8、感應器設置(側面) 129
圖 9、槓鈴與反光球設置 130
圖 10、最大等長肌力測試(上肢) 131
圖 11、最大等長肌力測試(下肢與軀幹) 132
圖 12、功能性動作篩檢(深蹲、跨欄、直線前蹲) 133
圖 13、功能性動作篩檢(肩膀活動度、直膝抬腿、伏地挺身、旋轉穩定) 134
圖 14、肩部動作控制測試 135
圖 15、腰部動作控制測試 136
圖 16、肌肉長度測試(胸小肌、提肩胛肌、闊背肌、腳踝活動度) 137
圖 17、肌肉長度測試(股直肌、膕旁肌、髖屈肌、髖外展肌) 138
圖 18、患側踝關節矢狀面正向最大角度(肩痛組與無肩痛組) 139
圖 19、患側踝關節矢狀面負向最大角度(肩痛組與無肩痛組) 139
圖 20、達患側踝關節矢狀面正向最大速度的時間(肩痛組與無肩痛組) 140
圖 21、達最大健側小腿向前加速度的時間(肩痛組與無肩痛組) 140
圖 22、達患側髖關節橫狀面負向最大角度的時間(肩痛組與無肩痛組) 141
圖 23、最大骨盆向後加速度(肩痛組與無肩痛組) 141
圖 24、達胸椎橫狀面負向最大角度的時間(肩痛組與無肩痛組) 142
圖 25、達胸椎矢狀面負向最大角速度的時間(肩痛組與無肩痛組) 142
圖 26、最大健側肩胛骨整體加速度(肩痛組與無肩痛組) 143
圖 27、最大健側肩胛骨向前加速度(肩痛組與無肩痛組) 143
圖 28、最大健側上臂向後加速度(肩痛組與無肩痛組) 144
圖 29、健側肩關節橫狀面正向最大角速度(肩痛組與無肩痛組) 144
圖 30、健側肩關節橫狀面負向最大角速度(肩痛組與無肩痛組) 145
圖 31、達健側肩關節矢狀面正向最大角速度的時間(肩痛組與無肩痛組) 145
圖 32、達健側肩關節橫狀面正向最大角速度的時間(肩痛組與無肩痛組) 146
圖 33、達健側肩關節橫狀面負向最大角速度的時間(肩痛組與無肩痛組) 146
圖 34、患側肩關節矢狀面負向最大角速度(肩痛組與無肩痛組) 147
圖 35、患側肩關節橫狀面正向最大角速度(肩痛組與無肩痛組) 147
圖 36、達最大患側肩胛骨向外加速度的時間(肩痛組與無肩痛組) 148
圖 37、最大患側上臂整體加速度(肩痛組與無肩痛組) 148
圖 38、最大患側上臂向上加速度(肩痛組與無肩痛組) 149
圖 39、舉重分期時間(肩痛組與無肩痛組) 149
圖 40、最大慣用側大腿整體加速度(背痛組與無背痛組) 150
圖 41、最大慣用側大腿向前加速度(背痛組與無背痛組) 150
圖 42、最大慣用側大腿向外加速度(背痛組與無背痛組) 151
圖 43、最大非慣用側大腿向前加速度(背痛組與無背痛組) 151
圖 44、最大非慣用側大腿向上加速度(背痛組與無背痛組) 152
圖 45、達最大非慣用側大腿向外加速度的時間(背痛組與無背痛組) 152
圖 46、達最大非慣用側大腿向後加速度的時間(背痛組與無背痛組) 153
圖 47、慣用側膝關節矢狀面負向最大加速度(背痛組與無背痛組) 153
圖 48、非慣用側膝關節矢狀面負向最大角速度(背痛組與無背痛組) 154
圖 49、達最大慣用側足部向前加速度的時間(背痛組與無背痛組) 154
圖 50、達最大慣用側足部向上加速度的時間(背痛組與無背痛組) 155
圖 51、達腰椎橫狀面正向最大角度的時間(背痛組與無背痛組) 155
圖 52、最大非慣用側上臂向前加速度(背痛組與無背痛組) 156
圖 53、最大非慣用側上臂向外加速度(背痛組與無背痛組) 156
圖 54、達慣用側肩關節橫狀面負向最大加速度的時間(背痛組與無背痛組) 157
圖 55、達最大慣用側肩關節橫狀面正向最大加速度的時間(背痛組與無背痛組) 157
圖 56、達最大豎脊肌活化程度的時間(背痛組與無背痛組) 158
圖 57、達最大肱二頭肌活化程度的時間(背痛組與無背痛組) 158
圖 58、各舉重分期時間(背痛組與無背痛組) 159


附錄目錄
附錄 1、國立陽明大學人體研究暨倫理委員會同意人體研究證明書 160
附錄 2、測試表格:功能性動作篩檢、動作控制測試、肌肉長度測試 162
附錄 3、前驅研究:慣性測量單元之信度分析 165
附錄 4、前驅研究:功能性動作篩檢、肌肉長度與動作控制測試再測信度分析 169
附錄 5、單一受試者抓舉動作學、肌肉活化程度、槓鈴軌跡示意圖 175
附錄 6、動作分析參數簡寫翻譯表 193
1. Chiu LZF, Schilling BK. A primer on weightlifting: from sport to sports training. Strength Cond J. 2005;27:42-8.
2. Stone MH, Pierce KC, Sands WA, Stone ME. Weightlifting: a brief overview. Strength Cond J. 2006;28:50-66.
3. Calhoon G, Fry AC. Injury rates and profiles of elite competitive weightlifters. J Athl Train. 1999;34:232-8.
4. Jonasson P, Halldin K, Karlsson J, Thoreson O, Hvannberg J, Sward L, et al. Prevalence of joint-related pain in the extremities and spine in five groups of top athletes. Knee Surg Sports Traumatol Arthrosc. 2011;19:1540-6.
5. 吳孟爵, 楊素冠, 黃泰源. 舉重選手運動傷害:台灣調查研究. 北體學報. 2006;157-64.
6. Raske A, Norlin R. Injury incidence and prevalence among elite weight and power lifters. Am J Sports Med. 2002;30:248-56.
7. Neviaser TJ. Weight lifting. Risks and injuries to the shoulder. Clin Sports Med. 1991;10:615-21.
8. Chen SK, Wu MT, Huang CH, Wu JH, Guo LY, Wu WL. The analysis of upper limb movement and EMG activation during the snatch under various loading conditions. J Mech Med Biol. 2013;13:1350010.
9. Ernst AT, Jensen RL. Rotator cuff activation during the Olympic snatch under various loading conditions. in ISBS-Conference Proceedings Archive. 2016.
10. Hadi G, Akkus H, Harbili E. Three-dimensional kinematic analysis of the snatch technique for lifting different barbell weights. J Strength Cond Res. 2012;26:1568-76.
11. Gourgoulis V, Aggeloussis N, Garas A, Mavromatis G. Unsuccessful vs. successful performance in snatch lifts: a kinematic approach. J Strength Cond Res. 2009;23:486-94.
12. Yussof S, Hasan N, Wilson B. Biomechanical analysis of the snatch during weightlifting competition. in ISBS-Conference Proceedings Archive. 2002.
13. Kipp K, Harris C. Patterns of barbell acceleration during the snatch in weightlifting competition. J Sports Sci. 2015;33:1467-71.
14. Kipp K, Redden J, Sabick MB, Harris C. Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints. J Strength Cond Res. 2012;26:1838-44.
15. Isaka T, Okada J, Funato K. Kinematic analysis of the barbell during the snatch movement of elite asian weight lifters. J Appl Biomech. 1996;12:508-16.
16. Gourgoulis V, Aggelousis N, Mavromatis G, Garas A. Three-dimensional kinematic analysis of the snatch of elite Greek weightlifters. J Sports Sci. 2000;18:643-52.
17. Korkmaz S, Harbili E. Biomechanical analysis of the snatch technique in junior elite female weightlifters. J Sports Sci. 2016;34:1088-93.
18. Gourgoulis V, Aggeloussis N, Antoniou P, Christoforidis C, Mavromatis G, Garas A. Comparative 3-dimensional kinematic analysis of the snatch technique in elite male and female Greek weightlifters. J Strength Cond Res. 2002;16:359-66.
19. Gourgoulis V, Aggeloussis N, Kalivas V, Antoniou P, Mavromatis G. Snatch lift kinematics and bar energetics in male adolescent and adult weightlifters. J Sports Med Phys Fitness. 2004;44:126-31.
20. Aasa U, Svartholm I, Andersson F, Berglund L. Injuries among weightlifters and powerlifters: a systematic review. Br J Sports Med. 2017;51:211-9.
21. Busch AM, Clifton DR, Onate JA, Ramsey VK, Cromartie F. Relationship of preseason movement screens with overuse symptoms in collegiate baseball players. International journal of sports physical therapy. 2017;12:960-6.
22. Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function - part 1. Int J Sports Phys Ther. 2014;9:396-409.
23. Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function-part 2. Int J Sports Phys Ther. 2014;9:549-63.
24. Duke SR, Martin SE, Gaul CA. Preseason Functional Movement Screen predicts risk of time-loss injury in experienced male rugby union athletes. J Strength Cond Res. 2017;31:2740-7.
25. Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason Functional Movement Screen? N Am J Sports Phys Ther. 2007;2:147-58.
26. Kiesel KB, Butler RJ, Plisky PJ. Prediction of injury by limited and asymmetrical fundamental movement patterns in american football players. J Sport Rehabil. 2014;23:88-94.
27. Mokha M, Sprague PA, Gatens DR. Predicting musculoskeletal injury in national collegiate athletic association division II athletes from asymmetries and individual-test versus composite Functional Movement Screen scores. J Athl Train. 2016;51:276-82.
28. Warren M, Smith CA, Chimera NJ. Association of the Functional Movement Screen with injuries in division I athletes. J Sport Rehabil. 2015;24:163-70.
29. Enoka RM. The pull in olympic weightlifting. Med Sci Sports. 1979;11:131-7.
30. Garhammer J. Weight lifting and training. Biomechanics of Sport. 1989;Vaughan, CL, ed. Boca Raton: CRC Publishers. 169-211.
31. Baumann W, Gross V, Quade K, Galbierz P, Schwirtz A. The snatch technique of world class weightlifters at the 1985 world championships. International Journal of Sport Biomech. 1988;4:68-89.
32. Akkus H. Kinematic analysis of the snatch lift with elite female weightlifters during the 2010 World Weightlifting Championship. J Strength Cond Res. 2012;26:897-905.
33. 蔣明雄, 盧素娥, 鴻宗穎. 舉重抓舉提鈴期至發力期槓鈴中心運動學特徵之研究. 運動教練科學. 2016;23-30.
34. Musser LJ, Garhammer J, Rozenek R, Crussemeyer JA, Vargas EM. Anthropometry and barbell trajectory in the snatch lift for elite women weightlifters. J Strength Cond Res. 2014;28:1636-48.
35. Garhammer J. Weight lifting and training. Biomechanics of Sport. 1989;169-211.
36. Vorobyev AN. A textbook on weightlifting. International Weightlifting Federation; 1978
37. Stone MH, O'Bryant HS, Williams FE, Johnson RL, Pierce KC. Analysis of bar paths during the snatch in elite male weightlifters. Strength Cond J. 1998;20:30-8.
38. Ikeda Y, Jinji T, Matsubayashi T, Matsuo A, Inagaki E, Takemata T, et al. Comparison of the snatch technique for female weightlifters at the 2008 Asian championships. J Strength Cond Res. 2012;26:1281-95.
39. Lee S, DeRosia KD, Lamie LM. Evaluating the contribution of lower extremity kinetics to whole body power output during the power snatch. Sports Biomech. 2018;17:554-6.
40. Nagao H, Ishii Y. Characteristics of the shrug motion and trapezius muscle activity during the power clean. J Strength Cond Res. 2019;
41. Wang WS SH, Zuo HX, Rong JH, Ren YH, Tian DX. An epidemiological survey and comparative study of the injuries in weightlifting. Sport Sci. 2000;20:44-6.
42. Junge A, Engebretsen L, Mountjoy ML, Alonso JM, Renstrom PA, Aubry MJ, et al. Sports injuries during the Summer Olympic Games 2008. Am J Sports Med. 2009;37:2165-72.
43. Gross ML, Brenner SL, Esformes I, Sonzogni JJ. Anterior shoulder instability in weight lifters. Am J Sports Med. 1993;21:599-603.
44. Fortin JD. The biomechanicai principles of preventing weightlifting injuries. Physical Medicine and Rehabilitation. 1997;11:697-716.
45. Burn MB, McCulloch PC, Lintner DM, Liberman SR, Harris JD. Prevalence of scapular dyskinesis in overhead and nonoverhead athletes: a systematic review. Orthop J Sports Med. 2016;4:2325967115627608.
46. Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sports. 2011;21:352-8.
47. Ludewig PM, Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther. 2009;39:90-104.
48. O'Sullivan P. Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism. Man Ther. 2005;10:242-55.
49. Sachman S. Diagnosis and treatment of movement impairment syndromes. Elsevier Health Sciences; 2001
50. Comerford M, Mottram S. Kinetic control: the management of uncontrolled movement. Elsevier Health Sciences; 2012
51. Cook G. Movement: Functional Movement Systems: Screening, Assessment, Corrective Strategies. On Target Publ.; 2011
52. Boyle M. Advances in Functional Training. Lotus; 2011
53. Bonazza NA, Smuin D, Onks CA, Silvis ML, Dhawan A. Reliability, validity, and injury predictive value of the functional movement screen: a systematic review and meta-analysis. Am J Sports Med. 2017;45:725-32.
54. Bunn PDS, Rodrigues AI, Bezerra da Silva E. The association between the Functional Movement Screen outcome and the incidence of musculoskeletal injuries: a systematic review with meta-analysis. Phys Ther Sport. 2019;35:146-58.
55. Moran RW, Schneiders AG, Mason J, Sullivan SJ. Do Functional Movement Screen (FMS) composite scores predict subsequent injury? a systematic review with meta-analysis. Br J Sports Med. 2017;51:1661-9.
56. Trinidad-Fernandez M, Gonzalez-Sanchez M, Cuesta-Vargas AI. Is a low Functional Movement Screen score (≤14/21) associated with injuries in sport? A systematic review and meta-analysis. BMJ Open Sport Exerc Med. 2019;5:e000501.
57. Chalmers S, Fuller JT, Debenedictis TA, Townsley S, Lynagh M, Gleeson C, et al. Asymmetry during preseason Functional Movement Screen testing is associated with injury during a junior Australian football season. J Sci Med Sport. 2017;20:653-7.
58. Mokha M, Sprague PA, Gatens DR. Predicting musculoskeletal injury in national collegiate athletic association division II athletes from asymmetries and individual-test versus composite Functional Movement Screen scores. J Athl Train. 2016;51:276-82.
59. Lisman P, Nadelen M, Hildebrand E, Leppert K, de la Motte S. Functional movement screen and Y-Balance test scores across levels of American football players. Biol Sport. 2018;35:253-60.
60. Luomajoki HA, Bonet Beltran MB, Careddu S, Bauer CM. Effectiveness of movement control exercise on patients with non-specific low back pain and movement control impairment: A systematic review and meta-analysis. Musculoskelet Sci Pract. 2018;36:1-11.
61. Denteneer L, Stassijns G, De Hertogh W, Truijen S, Van Daele U. Inter- and intrarater reliability of clinical tests associated with functional lumbar segmental instability and motor control impairment in patients with low back pain: a systematic review. Arch Phys Med Rehabil. 2017;98:151-64.e6.
62. Elgueta-Cancino E, Schabrun S, Danneels L, van den Hoorn W, Hodges P. Validation of a clinical test of thoracolumbar dissociation in chronic low back pain. J Orthop Sports Phys Ther. 2015;45:703-12.
63. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175-91.
64. Barbero M, Merletti R, Rainoldi A. Atlas of muscle innervation zones: understanding surface electromyography and its applications. Springer Milan; 2012
65. Mundt M, Wisser A, David S, Dupré T, Quack V, Bamer F, et al. The influence of motion tasks on the accuracy of kinematic motion patterns of an imu-based measurement system. 2017
66. Bauer CM, Rast FM, Ernst MJ, Kool J, Oetiker S, Rissanen SM, et al. Concurrent validity and reliability of a novel wireless inertial measurement system to assess trunk movement. J Electromyogr Kinesiol. 2015;25:782-90.
67. Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput. 2008;46:169-78.
68. Sato K, Sands WA, Stone MH. The reliability of accelerometry to measure weightlifting performance. Sports Biomech. 2012;11:524-31.
69. Avers D, Brown M. Daniels and Worthingham's muscle testing : techniques of manual examination and performance testing. 2019
70. 鄧捷, 阮彥鈞, 楊珈閣, 蔡詠竹, 龍柏蔓, 吳福連, et al. 大學生功能性動作檢測與Y字平衡測試對受傷之預測. 大專體育學刊. 2018;20:178-90.
71. Henoch Q, Dpt QH. Weightlifting movement assessment & optimization: mobility & stability for the snatch and clean & jerk. Catalyst Athletics, LLC; 2017
72. Shahidi B, Johnson CL, Curran-Everett D, Maluf KS. Reliability and group differences in quantitative cervicothoracic measures among individuals with and without chronic neck pain. BMC Musculoskelet Disord. 2012;13:215.
73. Lee JH, Cynn HS, Choi WJ, Jeong HJ, Yoon TL. Reliability of levator scapulae index in subjects with and without scapular downward rotation syndrome. Phys Ther Sport. 2016;19:1-6.
74. Konor MM, Morton S, Eckerson JM, Grindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7:279-87.
75. Magee DJ. Orthopedic Physical Assessment. Saunders; 2002
76. Peeler J, Anderson JE. Reliability of the Ely's test for assessing rectus femoris muscle flexibility and joint range of motion. J Orthop Res. 2008;26:793-9.
77. Harvey D. Assessment of the flexibility of elite athletes using the modified Thomas test. Br J Sports Med. 1998;32:68-70.
78. 陳恩賜, 黃昱豪, 謝霖芬, 王子娟. Effect of Myofascial Trigger Points Therapy and Subacromial Corticosteroid Injection in Patients with Unilateral Shoulder Impingement Syndrome. 物理治療. 2017;42:146-7.
79. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain. 2004;8:283-91.
80. Shih YF, Wang YC. Spiking kinematics in volleyball players with shoulder pain. J Athl Train. 2019;54:90-8.
81. Gillet B, Begon M, Berger-Vachon C, Rogowski I. Kinematics of shoulder joints during tennis serve in young female athletes: influence of history of shoulder pain. 2017
82. Kibler WB, Kuhn JE, Wilk K, Sciascia A, Moore S, Laudner K, et al. The disabled throwing shoulder: spectrum of pathology-10-year update. Arthroscopy. 2013;29:141-61.e26.
83. Vila Dieguez O, Barden JM. Body roll differences in freestyle swimming between swimmers with and without shoulder pain. Sports Biomech. 2020;1-14.
84. Tafuri S, Notarnicola A, Monno A, Ferretti F, Moretti B. CrossFit athletes exhibit high symmetry of fundamental movement patterns. A cross-sectional study. Muscles Ligaments Tendons J. 2016;6:157-60.
85. Chimera NJ, Smith CA, Warren M. Injury history, sex, and performance on the functional movement screen and Y balance test. J Athl Train. 2015;50:475-85.
86. Wilk KE, Obma P, Simpson CD, Cain EL, Dugas JR, Andrews JR. Shoulder injuries in the overhead athlete. J Orthop Sports Phys Ther. 2009;39:38-54.
87. Cools AM, Johansson FR, Borms D, Maenhout A. Prevention of shoulder injuries in overhead athletes: a science-based approach. Braz J Phys Ther. 2015;19:331-9.
88. de la Motte SJ, Lisman P, Sabatino M, Beutler AI, OʼConnor FG, Deuster PA. The relationship between functional movement, balance deficits, and previous injury history in deploying marine warfighters. J Strength Cond Res. 2016;30:1619-25.
89. Attwood MJ, Roberts SP, Trewartha G, England M, Stokes KA. Association of the Functional Movement Screen™ with match-injury burden in men's community rugby union. J Sports Sci. 2019;37:1365-74.
90. Slodownik R, Ogonowska-Slodownik A, Morgulec-Adamowicz N. Functional Movement Screen™ and history of injury in the assessment of potential risk of injury among team handball players. J Sports Med Phys Fitness. 2018;58:1281-6.
91. Mortensen BB, Mitchell UH, Johnson AW, Fellingham GW, Feland JB, Myrer JW. Preseason screen cannot predict injury over three years of college football. Med Sci Sports Exerc. 2020;52:2286-92.
92. Kibler W, Wilkes T, Sciascia A. Mechanics and pathomechanics in the overhead athlete. Clin Sports Med. 2013;32:637-51.
93. Kibler WB. Biomechanical analysis of the shoulder during tennis activities. Clin Sports Med. 1995;14:79-85.
94. Elliott B, Fleisig G, Nicholls R, Escamilia R. Technique effects on upper limb loading in the tennis serve. J Sci Med Sport. 2003;6:76-87.
95. Burkhart SS, Morgan CD, Kibler WB. Shoulder injuries in overhead athletes. The "dead arm" revisited. Clin Sports Med. 2000;19:125-58.
96. Struyf F, Nijs J, Meeus M, Roussel NA, Mottram S, Truijen S, et al. Does scapular positioning predict shoulder pain in recreational overhead athletes? Int J Sports Med. 2014;35:75-82.
97. Kibler WB, Sciascia A. Current concepts: scapular dyskinesis. Br J Sports Med. 2010;44:300-5.
98. Kibler WB, Sciascia A, Wilkes T. Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg. 2012;20:364-72.
99. Sedrez JA, Mesquita PV, Gelain GM, Candotti CT. Kinematic characteristics of sit-to-stand movements in patients with low back pain: a systematic review. J Manipulative Physiol Ther. 2019;42:532-40.
100. Laird RA, Gilbert J, Kent P, Keating JL. Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2014;15:229.
101. Stuelcken MC, Ferdinands RE, Sinclair PJ. Three-dimensional trunk kinematics and low back pain in elite female fast bowlers. J Appl Biomech. 2010;26:52-61.
102. Tojima M, Torii S. Difference in kick motion of adolescent soccer players in presence and absence of low back pain. Gait Posture. 2018;59:89-92.
103. Van Hoof W, Volkaerts K, O'Sullivan K, Verschueren S, Dankaerts W. Comparing lower lumbar kinematics in cyclists with low back pain (flexion pattern) versus asymptomatic controls--field study using a wireless posture monitoring system. Man Ther. 2012;17:312-7.
104. Wasser JG, Chen C, Vincent HK. Kinematics of Shooting in High School and Collegiate Lacrosse Players With and Without Low Back Pain. Orthop J Sports Med. 2016;4:2325967116657535.
105. Tsai YS, Sell TC, Smoliga JM, Myers JB, Learman KE, Lephart SM. A comparison of physical characteristics and swing mechanics between golfers with and without a history of low back pain. J Orthop Sports Phys Ther. 2010;40:430-8.
106. Wattananon P, Sinsurin K, Somprasong S. Association between lumbopelvic motion and muscle activation in patients with non-specific low back pain during forward bending task: A cross-sectional study. Hong Kong Physiother J. 2020;40:29-37.
107. Jones SL, Henry SM, Raasch CC, Hitt JR, Bunn JY. Individuals with non-specific low back pain use a trunk stiffening strategy to maintain upright posture. J Electromyogr Kinesiol. 2012;22:13-20.
108. Gonzalez SL, Diaz AM, Plummer HA, Michener LA. Musculoskeletal screening to identify female collegiate rowers at risk for low back pain. J Athl Train. 2018;53:1173-80.
109. Beach TA, Frost DM, Callaghan JP. FMS™ scores and low-back loading during lifting--whole-body movement screening as an ergonomic tool? Appl Ergon. 2014;45:482-9.
110. Luomajoki H, Kool J, de Bruin ED, Airaksinen O. Movement control tests of the low back; evaluation of the difference between patients with low back pain and healthy controls. BMC Musculoskelet Disord. 2008;9:170.
111. Silfies SP, Bhattacharya A, Biely S, Smith SS, Giszter S. Trunk control during standing reach: A dynamical system analysis of movement strategies in patients with mechanical low back pain. Gait Posture. 2009;29:370-6.
112. Roussel N, De Kooning M, Schutt A, Mottram S, Truijen S, Nijs J, et al. Motor control and low back pain in dancers. Int J Sports Med. 2013;34:138-43.
1. Chiu LZF, Schilling BK. A primer on weightlifting: from sport to sports training. Strength Cond J. 2005;27:42-8.
2. Stone MH, Pierce KC, Sands WA, Stone ME. Weightlifting: a brief overview. Strength Cond J. 2006;28:50-66.
3. Calhoon G, Fry AC. Injury rates and profiles of elite competitive weightlifters. J Athl Train. 1999;34:232-8.
4. Jonasson P, Halldin K, Karlsson J, Thoreson O, Hvannberg J, Sward L, et al. Prevalence of joint-related pain in the extremities and spine in five groups of top athletes. Knee Surg Sports Traumatol Arthrosc. 2011;19:1540-6.
5. 吳孟爵, 楊素冠, 黃泰源. 舉重選手運動傷害:台灣調查研究. 北體學報. 2006;157-64.
6. Raske A, Norlin R. Injury incidence and prevalence among elite weight and power lifters. Am J Sports Med. 2002;30:248-56.
7. Neviaser TJ. Weight lifting. Risks and injuries to the shoulder. Clin Sports Med. 1991;10:615-21.
8. Chen SK, Wu MT, Huang CH, Wu JH, Guo LY, Wu WL. The analysis of upper limb movement and EMG activation during the snatch under various loading conditions. J Mech Med Biol. 2013;13:1350010.
9. Ernst AT, Jensen RL. Rotator cuff activation during the Olympic snatch under various loading conditions. in ISBS-Conference Proceedings Archive. 2016.
10. Hadi G, Akkus H, Harbili E. Three-dimensional kinematic analysis of the snatch technique for lifting different barbell weights. J Strength Cond Res. 2012;26:1568-76.
11. Gourgoulis V, Aggeloussis N, Garas A, Mavromatis G. Unsuccessful vs. successful performance in snatch lifts: a kinematic approach. J Strength Cond Res. 2009;23:486-94.
12. Yussof S, Hasan N, Wilson B. Biomechanical analysis of the snatch during weightlifting competition. in ISBS-Conference Proceedings Archive. 2002.
13. Kipp K, Harris C. Patterns of barbell acceleration during the snatch in weightlifting competition. J Sports Sci. 2015;33:1467-71.
14. Kipp K, Redden J, Sabick MB, Harris C. Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints. J Strength Cond Res. 2012;26:1838-44.
15. Isaka T, Okada J, Funato K. Kinematic analysis of the barbell during the snatch movement of elite asian weight lifters. J Appl Biomech. 1996;12:508-16.
16. Gourgoulis V, Aggelousis N, Mavromatis G, Garas A. Three-dimensional kinematic analysis of the snatch of elite Greek weightlifters. J Sports Sci. 2000;18:643-52.
17. Korkmaz S, Harbili E. Biomechanical analysis of the snatch technique in junior elite female weightlifters. J Sports Sci. 2016;34:1088-93.
18. Gourgoulis V, Aggeloussis N, Antoniou P, Christoforidis C, Mavromatis G, Garas A. Comparative 3-dimensional kinematic analysis of the snatch technique in elite male and female Greek weightlifters. J Strength Cond Res. 2002;16:359-66.
19. Gourgoulis V, Aggeloussis N, Kalivas V, Antoniou P, Mavromatis G. Snatch lift kinematics and bar energetics in male adolescent and adult weightlifters. J Sports Med Phys Fitness. 2004;44:126-31.
20. Aasa U, Svartholm I, Andersson F, Berglund L. Injuries among weightlifters and powerlifters: a systematic review. Br J Sports Med. 2017;51:211-9.
21. Busch AM, Clifton DR, Onate JA, Ramsey VK, Cromartie F. Relationship of preseason movement screens with overuse symptoms in collegiate baseball players. International journal of sports physical therapy. 2017;12:960-6.
22. Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function - part 1. Int J Sports Phys Ther. 2014;9:396-409.
23. Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function-part 2. Int J Sports Phys Ther. 2014;9:549-63.
24. Duke SR, Martin SE, Gaul CA. Preseason Functional Movement Screen predicts risk of time-loss injury in experienced male rugby union athletes. J Strength Cond Res. 2017;31:2740-7.
25. Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason Functional Movement Screen? N Am J Sports Phys Ther. 2007;2:147-58.
26. Kiesel KB, Butler RJ, Plisky PJ. Prediction of injury by limited and asymmetrical fundamental movement patterns in american football players. J Sport Rehabil. 2014;23:88-94.
27. Mokha M, Sprague PA, Gatens DR. Predicting musculoskeletal injury in national collegiate athletic association division II athletes from asymmetries and individual-test versus composite Functional Movement Screen scores. J Athl Train. 2016;51:276-82.
28. Warren M, Smith CA, Chimera NJ. Association of the Functional Movement Screen with injuries in division I athletes. J Sport Rehabil. 2015;24:163-70.
29. Enoka RM. The pull in olympic weightlifting. Med Sci Sports. 1979;11:131-7.
30. Garhammer J. Weight lifting and training. Biomechanics of Sport. 1989;Vaughan, CL, ed. Boca Raton: CRC Publishers. 169-211.
31. Baumann W, Gross V, Quade K, Galbierz P, Schwirtz A. The snatch technique of world class weightlifters at the 1985 world championships. International Journal of Sport Biomech. 1988;4:68-89.
32. Akkus H. Kinematic analysis of the snatch lift with elite female weightlifters during the 2010 World Weightlifting Championship. J Strength Cond Res. 2012;26:897-905.
33. 蔣明雄, 盧素娥, 鴻宗穎. 舉重抓舉提鈴期至發力期槓鈴中心運動學特徵之研究. 運動教練科學. 2016;23-30.
34. Musser LJ, Garhammer J, Rozenek R, Crussemeyer JA, Vargas EM. Anthropometry and barbell trajectory in the snatch lift for elite women weightlifters. J Strength Cond Res. 2014;28:1636-48.
35. Garhammer J. Weight lifting and training. Biomechanics of Sport. 1989;169-211.
36. Vorobyev AN. A textbook on weightlifting. International Weightlifting Federation; 1978
37. Stone MH, O'Bryant HS, Williams FE, Johnson RL, Pierce KC. Analysis of bar paths during the snatch in elite male weightlifters. Strength Cond J. 1998;20:30-8.
38. Ikeda Y, Jinji T, Matsubayashi T, Matsuo A, Inagaki E, Takemata T, et al. Comparison of the snatch technique for female weightlifters at the 2008 Asian championships. J Strength Cond Res. 2012;26:1281-95.
39. Lee S, DeRosia KD, Lamie LM. Evaluating the contribution of lower extremity kinetics to whole body power output during the power snatch. Sports Biomech. 2018;17:554-6.
40. Nagao H, Ishii Y. Characteristics of the shrug motion and trapezius muscle activity during the power clean. J Strength Cond Res. 2019;
41. Wang WS SH, Zuo HX, Rong JH, Ren YH, Tian DX. An epidemiological survey and comparative study of the injuries in weightlifting. Sport Sci. 2000;20:44-6.
42. Junge A, Engebretsen L, Mountjoy ML, Alonso JM, Renstrom PA, Aubry MJ, et al. Sports injuries during the Summer Olympic Games 2008. Am J Sports Med. 2009;37:2165-72.
43. Gross ML, Brenner SL, Esformes I, Sonzogni JJ. Anterior shoulder instability in weight lifters. Am J Sports Med. 1993;21:599-603.
44. Fortin JD. The biomechanicai principles of preventing weightlifting injuries. Physical Medicine and Rehabilitation. 1997;11:697-716.
45. Burn MB, McCulloch PC, Lintner DM, Liberman SR, Harris JD. Prevalence of scapular dyskinesis in overhead and nonoverhead athletes: a systematic review. Orthop J Sports Med. 2016;4:2325967115627608.
46. Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sports. 2011;21:352-8.
47. Ludewig PM, Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther. 2009;39:90-104.
48. O'Sullivan P. Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism. Man Ther. 2005;10:242-55.
49. Sachman S. Diagnosis and treatment of movement impairment syndromes. Elsevier Health Sciences; 2001
50. Comerford M, Mottram S. Kinetic control: the management of uncontrolled movement. Elsevier Health Sciences; 2012
51. Cook G. Movement: Functional Movement Systems: Screening, Assessment, Corrective Strategies. On Target Publ.; 2011
52. Boyle M. Advances in Functional Training. Lotus; 2011
53. Bonazza NA, Smuin D, Onks CA, Silvis ML, Dhawan A. Reliability, validity, and injury predictive value of the functional movement screen: a systematic review and meta-analysis. Am J Sports Med. 2017;45:725-32.
54. Bunn PDS, Rodrigues AI, Bezerra da Silva E. The association between the Functional Movement Screen outcome and the incidence of musculoskeletal injuries: a systematic review with meta-analysis. Phys Ther Sport. 2019;35:146-58.
55. Moran RW, Schneiders AG, Mason J, Sullivan SJ. Do Functional Movement Screen (FMS) composite scores predict subsequent injury? a systematic review with meta-analysis. Br J Sports Med. 2017;51:1661-9.
56. Trinidad-Fernandez M, Gonzalez-Sanchez M, Cuesta-Vargas AI. Is a low Functional Movement Screen score (≤14/21) associated with injuries in sport? A systematic review and meta-analysis. BMJ Open Sport Exerc Med. 2019;5:e000501.
57. Chalmers S, Fuller JT, Debenedictis TA, Townsley S, Lynagh M, Gleeson C, et al. Asymmetry during preseason Functional Movement Screen testing is associated with injury during a junior Australian football season. J Sci Med Sport. 2017;20:653-7.
58. Mokha M, Sprague PA, Gatens DR. Predicting musculoskeletal injury in national collegiate athletic association division II athletes from asymmetries and individual-test versus composite Functional Movement Screen scores. J Athl Train. 2016;51:276-82.
59. Lisman P, Nadelen M, Hildebrand E, Leppert K, de la Motte S. Functional movement screen and Y-Balance test scores across levels of American football players. Biol Sport. 2018;35:253-60.
60. Luomajoki HA, Bonet Beltran MB, Careddu S, Bauer CM. Effectiveness of movement control exercise on patients with non-specific low back pain and movement control impairment: A systematic review and meta-analysis. Musculoskelet Sci Pract. 2018;36:1-11.
61. Denteneer L, Stassijns G, De Hertogh W, Truijen S, Van Daele U. Inter- and intrarater reliability of clinical tests associated with functional lumbar segmental instability and motor control impairment in patients with low back pain: a systematic review. Arch Phys Med Rehabil. 2017;98:151-64.e6.
62. Elgueta-Cancino E, Schabrun S, Danneels L, van den Hoorn W, Hodges P. Validation of a clinical test of thoracolumbar dissociation in chronic low back pain. J Orthop Sports Phys Ther. 2015;45:703-12.
63. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175-91.
64. Barbero M, Merletti R, Rainoldi A. Atlas of muscle innervation zones: understanding surface electromyography and its applications. Springer Milan; 2012
65. Mundt M, Wisser A, David S, Dupré T, Quack V, Bamer F, et al. The influence of motion tasks on the accuracy of kinematic motion patterns of an imu-based measurement system. 2017
66. Bauer CM, Rast FM, Ernst MJ, Kool J, Oetiker S, Rissanen SM, et al. Concurrent validity and reliability of a novel wireless inertial measurement system to assess trunk movement. J Electromyogr Kinesiol. 2015;25:782-90.
67. Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput. 2008;46:169-78.
68. Sato K, Sands WA, Stone MH. The reliability of accelerometry to measure weightlifting performance. Sports Biomech. 2012;11:524-31.
69. Avers D, Brown M. Daniels and Worthingham's muscle testing : techniques of manual examination and performance testing. 2019
70. 鄧捷, 阮彥鈞, 楊珈閣, 蔡詠竹, 龍柏蔓, 吳福連, et al. 大學生功能性動作檢測與Y字平衡測試對受傷之預測. 大專體育學刊. 2018;20:178-90.
71. Henoch Q, Dpt QH. Weightlifting movement assessment & optimization: mobility & stability for the snatch and clean & jerk. Catalyst Athletics, LLC; 2017
72. Shahidi B, Johnson CL, Curran-Everett D, Maluf KS. Reliability and group differences in quantitative cervicothoracic measures among individuals with and without chronic neck pain. BMC Musculoskelet Disord. 2012;13:215.
73. Lee JH, Cynn HS, Choi WJ, Jeong HJ, Yoon TL. Reliability of levator scapulae index in subjects with and without scapular downward rotation syndrome. Phys Ther Sport. 2016;19:1-6.
74. Konor MM, Morton S, Eckerson JM, Grindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7:279-87.
75. Magee DJ. Orthopedic Physical Assessment. Saunders; 2002
76. Peeler J, Anderson JE. Reliability of the Ely's test for assessing rectus femoris muscle flexibility and joint range of motion. J Orthop Res. 2008;26:793-9.
77. Harvey D. Assessment of the flexibility of elite athletes using the modified Thomas test. Br J Sports Med. 1998;32:68-70.
78. 陳恩賜, 黃昱豪, 謝霖芬, 王子娟. Effect of Myofascial Trigger Points Therapy and Subacromial Corticosteroid Injection in Patients with Unilateral Shoulder Impingement Syndrome. 物理治療. 2017;42:146-7.
79. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain. 2004;8:283-91.
80. Shih YF, Wang YC. Spiking kinematics in volleyball players with shoulder pain. J Athl Train. 2019;54:90-8.
81. Gillet B, Begon M, Berger-Vachon C, Rogowski I. Kinematics of shoulder joints during tennis serve in young female athletes: influence of history of shoulder pain. 2017
82. Kibler WB, Kuhn JE, Wilk K, Sciascia A, Moore S, Laudner K, et al. The disabled throwing shoulder: spectrum of pathology-10-year update. Arthroscopy. 2013;29:141-61.e26.
83. Vila Dieguez O, Barden JM. Body roll differences in freestyle swimming between swimmers with and without shoulder pain. Sports Biomech. 2020;1-14.
84. Tafuri S, Notarnicola A, Monno A, Ferretti F, Moretti B. CrossFit athletes exhibit high symmetry of fundamental movement patterns. A cross-sectional study. Muscles Ligaments Tendons J. 2016;6:157-60.
85. Chimera NJ, Smith CA, Warren M. Injury history, sex, and performance on the functional movement screen and Y balance test. J Athl Train. 2015;50:475-85.
86. Wilk KE, Obma P, Simpson CD, Cain EL, Dugas JR, Andrews JR. Shoulder injuries in the overhead athlete. J Orthop Sports Phys Ther. 2009;39:38-54.
87. Cools AM, Johansson FR, Borms D, Maenhout A. Prevention of shoulder injuries in overhead athletes: a science-based approach. Braz J Phys Ther. 2015;19:331-9.
88. de la Motte SJ, Lisman P, Sabatino M, Beutler AI, OʼConnor FG, Deuster PA. The relationship between functional movement, balance deficits, and previous injury history in deploying marine warfighters. J Strength Cond Res. 2016;30:1619-25.
89. Attwood MJ, Roberts SP, Trewartha G, England M, Stokes KA. Association of the Functional Movement Screen™ with match-injury burden in men's community rugby union. J Sports Sci. 2019;37:1365-74.
90. Slodownik R, Ogonowska-Slodownik A, Morgulec-Adamowicz N. Functional Movement Screen™ and history of injury in the assessment of potential risk of injury among team handball players. J Sports Med Phys Fitness. 2018;58:1281-6.
91. Mortensen BB, Mitchell UH, Johnson AW, Fellingham GW, Feland JB, Myrer JW. Preseason screen cannot predict injury over three years of college football. Med Sci Sports Exerc. 2020;52:2286-92.
92. Kibler W, Wilkes T, Sciascia A. Mechanics and pathomechanics in the overhead athlete. Clin Sports Med. 2013;32:637-51.
93. Kibler WB. Biomechanical analysis of the shoulder during tennis activities. Clin Sports Med. 1995;14:79-85.
94. Elliott B, Fleisig G, Nicholls R, Escamilia R. Technique effects on upper limb loading in the tennis serve. J Sci Med Sport. 2003;6:76-87.
95. Burkhart SS, Morgan CD, Kibler WB. Shoulder injuries in overhead athletes. The "dead arm" revisited. Clin Sports Med. 2000;19:125-58.
96. Struyf F, Nijs J, Meeus M, Roussel NA, Mottram S, Truijen S, et al. Does scapular positioning predict shoulder pain in recreational overhead athletes? Int J Sports Med. 2014;35:75-82.
97. Kibler WB, Sciascia A. Current concepts: scapular dyskinesis. Br J Sports Med. 2010;44:300-5.
98. Kibler WB, Sciascia A, Wilkes T. Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg. 2012;20:364-72.
99. Sedrez JA, Mesquita PV, Gelain GM, Candotti CT. Kinematic characteristics of sit-to-stand movements in patients with low back pain: a systematic review. J Manipulative Physiol Ther. 2019;42:532-40.
100. Laird RA, Gilbert J, Kent P, Keating JL. Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2014;15:229.
101. Stuelcken MC, Ferdinands RE, Sinclair PJ. Three-dimensional trunk kinematics and low back pain in elite female fast bowlers. J Appl Biomech. 2010;26:52-61.
102. Tojima M, Torii S. Difference in kick motion of adolescent soccer players in presence and absence of low back pain. Gait Posture. 2018;59:89-92.
103. Van Hoof W, Volkaerts K, O'Sullivan K, Verschueren S, Dankaerts W. Comparing lower lumbar kinematics in cyclists with low back pain (flexion pattern) versus asymptomatic controls--field study using a wireless posture monitoring system. Man Ther. 2012;17:312-7.
104. Wasser JG, Chen C, Vincent HK. Kinematics of Shooting in High School and Collegiate Lacrosse Players With and Without Low Back Pain. Orthop J Sports Med. 2016;4:2325967116657535.
105. Tsai YS, Sell TC, Smoliga JM, Myers JB, Learman KE, Lephart SM. A comparison of physical characteristics and swing mechanics between golfers with and without a history of low back pain. J Orthop Sports Phys Ther. 2010;40:430-8.
106. Wattananon P, Sinsurin K, Somprasong S. Association between lumbopelvic motion and muscle activation in patients with non-specific low back pain during forward bending task: A cross-sectional study. Hong Kong Physiother J. 2020;40:29-37.
107. Jones SL, Henry SM, Raasch CC, Hitt JR, Bunn JY. Individuals with non-specific low back pain use a trunk stiffening strategy to maintain upright posture. J Electromyogr Kinesiol. 2012;22:13-20.
108. Gonzalez SL, Diaz AM, Plummer HA, Michener LA. Musculoskeletal screening to identify female collegiate rowers at risk for low back pain. J Athl Train. 2018;53:1173-80.
109. Beach TA, Frost DM, Callaghan JP. FMS™ scores and low-back loading during lifting--whole-body movement screening as an ergonomic tool? Appl Ergon. 2014;45:482-9.
110. Luomajoki H, Kool J, de Bruin ED, Airaksinen O. Movement control tests of the low back; evaluation of the difference between patients with low back pain and healthy controls. BMC Musculoskelet Disord. 2008;9:170.
111. Silfies SP, Bhattacharya A, Biely S, Smith SS, Giszter S. Trunk control during standing reach: A dynamical system analysis of movement strategies in patients with mechanical low back pain. Gait Posture. 2009;29:370-6.
112. Roussel N, De Kooning M, Schutt A, Mottram S, Truijen S, Nijs J, et al. Motor control and low back pain in dancers. Int J Sports Med. 2013;34:138-43.
113. Grosdent S, Demoulin C, Rodriguez de La Cruz C, Giop R, Tomasella M, Crielaard JM, et al. Lumbopelvic motor control and low back pain in elite soccer players: a cross-sectional study. J Sports Sci. 2016;34:1021-9.
114. Tong MH, Mousavi SJ, Kiers H, Ferreira P, Refshauge K, van Dieën J. Is there a relationship between lumbar proprioception and low back pain? a systematic review with meta-analysis. Arch Phys Med Rehabil. 2017;98:120-36.e2.
115. Fasuyi FO, Fabunmi AA, Adegoke BOA. Hamstring muscle length and pelvic tilt range among individuals with and without low back pain. J Bodyw Mov Ther. 2017;21:246-50.
116. Arab AM, Nourbakhsh MR. Hamstring muscle length and lumbar lordosis in subjects with different lifestyle and work setting: comparison between individuals with and without chronic low back pain. J Back Musculoskelet Rehabil. 2014;27:63-70.
117. Sadler SG, Spink MJ, Ho A, De Jonge XJ, Chuter VH. Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: a systematic review of prospective cohort studies. BMC musculoskeletal disorders. 2017;18:179-.
118. Sweeney EA, Daoud AK, Potter MN, Ritchie L, Howell DR. Association between flexibility and low back pain in female adolescent gymnasts. Clin J Sport Med. 2019;29:379-83.
119. van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci. 2018;18:806-19.
120. Brodie MA, Walmsley A, Page W. Dynamic accuracy of inertial measurement units during simple pendulum motion. Comput Methods Biomech Biomed Engin. 2008;11:235-42.
121. Madgwick S, Harrison A, Vaidyanathan R. Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE International Conference on Rehabilitation Robotics. 2011;2011:5975346.
122. Burns A, Greene BR, McGrath MJ, Shea TJO, Kuris B, Ayer SM, et al. SHIMMER™ – a wireless sensor platform for noninvasive biomedical research. IEEE Sensors Journal. 2010;10:1527-34.
123. McGrath D, Greene BR, O’Donovan KJ, Caulfield B. Gyroscope-based assessment of temporal gait parameters during treadmill walking and running. Sports Eng. 2012;15:207-13.
124. Morris D, Saponas T, Guillory A, Kelner I. RecoFit: Using a wearable sensor to find, recognize, and count repetitive exercises. Conference on Human Factors in Computing Systems - Proceedings. 2014;
125. O'Reilly M, Caulfield B, Ward T, Johnston W, Doherty C. Wearable inertial sensor systems for lower limb exercise detection and evaluation: a systematic review. Sports Med. 2018;48:1221-46.
126. Mundt M, Thomsen W, David S, Dupré T, Bamer F, Potthast W, et al. Assessment of the measurement accuracy of inertial sensors during different tasks of daily living. J Biomech. 2019;84:81-6.
127. Lin J, Kulic D. Human pose recovery using wireless inertial measurement units. Physiol Meas. 2012;33:2099-115.
128. Bouvier B, Duprey S, Claudon L, Dumas R, Savescu A. Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors. 2015;15:18813-33.
129. Poitras I, Dupuis F, Bielmann M, Campeau-Lecours A, Mercier C, Bouyer LJ, et al. Validity and reliability of wearable sensors for joint angle estimation: a systematic review. Sensors (Basel). 2019;19:
130. Lebel K, Boissy P, Nguyen H, Duval C. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy. Biomed Eng Online. 2017;16:56.
131. McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture. 2009;29:360-9.
132. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155-63.
133. Portney LG, Watkins MP. Foundations of clinical research: applications to practice. Pearson/Prentice Hall; 2015
134. McHugh M. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22:276-82.
連結至畢業學校之論文網頁 點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!