为容器和 Pods 分配 CPU 资源
本页面展示如何为容器设置 CPU request(请求) 和 CPU limit(限制) 。 容器使用的 CPU 不能超过所配置的限制。 如果系统有空闲的 CPU 时间,则可以保证给容器分配其所请求数量的 CPU 资源。
准备开始
你必须拥有一个 Kubernetes 的集群,且必须配置 kubectl 命令行工具让其与你的集群通信。 建议运行本教程的集群至少有两个节点,且这两个节点不能作为控制平面主机。 如果你还没有集群,你可以通过 Minikube 构建一个你自己的集群,或者你可以使用下面的 Kubernetes 练习环境之一:
要获知版本信息,请输入
kubectl version
.
你的集群必须至少有 1 个 CPU 可用才能运行本任务中的示例。
本页的一些步骤要求你在集群中运行 metrics-server 服务。如果你的集群中已经有正在运行的 metrics-server 服务,可以跳过这些步骤。
如果你正在运行 Minikube ,请运行以下命令启用 metrics-server:
minikube addons enable metrics-server
查看 metrics-server(或者其他资源指标 API
metrics.k8s.io
服务提供者)是否正在运行,
请键入以下命令:
kubectl get apiservices
如果资源指标 API 可用,则会输出将包含一个对
metrics.k8s.io
的引用。
NAME
v1beta1.metrics.k8s.io
创建一个名字空间
创建一个 名字空间 ,以便将 本练习中创建的资源与集群的其余部分资源隔离。
kubectl create namespace cpu-example
指定 CPU 请求和 CPU 限制
要为容器指定 CPU 请求,请在容器资源清单中包含
resources: requests
字段。
要指定 CPU 限制,请包含
resources:limits
。
在本练习中,你将创建一个具有一个容器的 Pod。容器将会请求 0.5 个 CPU,而且最多限制使用 1 个 CPU。 这是 Pod 的配置文件:
apiVersion: v1
kind: Pod
metadata:
name: cpu-demo
namespace: cpu-example
spec:
containers:
- name: cpu-demo-ctr
image: vish/stress
resources:
limits:
cpu: "1"
requests:
cpu: "0.5"
args:
- -cpus
- "2"
配置文件的
args
部分提供了容器启动时的参数。
-cpus "2"
参数告诉容器尝试使用 2 个 CPU。
创建 Pod:
kubectl apply -f https://k8s.io/examples/pods/resource/cpu-request-limit.yaml --namespace=cpu-example
验证所创建的 Pod 处于 Running 状态
kubectl get pod cpu-demo --namespace=cpu-example
查看显示关于 Pod 的详细信息:
kubectl get pod cpu-demo --output=yaml --namespace=cpu-example
输出显示 Pod 中的一个容器的 CPU 请求为 500 milliCPU,并且 CPU 限制为 1 个 CPU。
resources:
limits:
cpu: "1"
requests:
cpu: 500m
使用
kubectl top
命令来获取该 Pod 的指标:
kubectl top pod cpu-demo --namespace=cpu-example
此示例输出显示 Pod 使用的是 974 milliCPU,即略低于 Pod 配置中指定的 1 个 CPU 的限制。
NAME CPU(cores) MEMORY(bytes)
cpu-demo 974m <something>
回想一下,通过设置
-cpu "2"
,你将容器配置为尝试使用 2 个 CPU,
但是容器只被允许使用大约 1 个 CPU。
容器的 CPU 用量受到限制,因为该容器正尝试使用超出其限制的 CPU 资源。
说明:
CPU 使用率低于 1.0 的另一种可能的解释是,节点可能没有足够的 CPU 资源可用。 回想一下,此练习的先决条件需要你的集群至少具有 1 个 CPU 可用。 如果你的容器在只有 1 个 CPU 的节点上运行,则容器无论为容器指定的 CPU 限制如何, 都不能使用超过 1 个 CPU。
CPU 单位
CPU 资源以 CPU 单位度量。Kubernetes 中的一个 CPU 等同于:
- 1 个 AWS vCPU
- 1 个 GCP核心
- 1 个 Azure vCore
- 裸机上具有超线程能力的英特尔处理器上的 1 个超线程
小数值是可以使用的。一个请求 0.5 CPU 的容器保证会获得请求 1 个 CPU 的容器的 CPU 的一半。
你可以使用后缀
m
表示毫。例如
100m
CPU、100 milliCPU 和 0.1 CPU 都相同。
精度不能超过 1m。
CPU 请求只能使用绝对数量,而不是相对数量。0.1 在单核、双核或 48 核计算机上的 CPU 数量值是一样的。
删除 Pod:
kubectl delete pod cpu-demo --namespace=cpu-example
设置超过节点能力的 CPU 请求
CPU 请求和限制与都与容器相关,但是我们可以考虑一下 Pod 具有对应的 CPU 请求和限制这样的场景。 Pod 对 CPU 用量的请求等于 Pod 中所有容器的请求数量之和。 同样,Pod 的 CPU 资源限制等于 Pod 中所有容器 CPU 资源限制数之和。
Pod 调度是基于资源请求值来进行的。 仅在某节点具有足够的 CPU 资源来满足 Pod CPU 请求时,Pod 将会在对应节点上运行:
在本练习中,你将创建一个 Pod,该 Pod 的 CPU 请求对于集群中任何节点的容量而言都会过大。 下面是 Pod 的配置文件,其中有一个容器。容器请求 100 个 CPU,这可能会超出集群中任何节点的容量。
apiVersion: v1
kind: Pod
metadata:
name: cpu-demo-2
namespace: cpu-example
spec:
containers:
- name: cpu-demo-ctr-2
image: vish/stress
resources:
limits:
cpu: "100"
requests:
cpu: "100"
args:
- -cpus
- "2"
创建 Pod:
kubectl apply -f https://k8s.io/examples/pods/resource/cpu-request-limit-2.yaml --namespace=cpu-example
查看该 Pod 的状态:
kubectl get pod cpu-demo-2 --namespace=cpu-example
输出显示 Pod 状态为 Pending。也就是说,Pod 未被调度到任何节点上运行, 并且 Pod 将无限期地处于 Pending 状态:
NAME READY STATUS RESTARTS AGE
cpu-demo-2 0/1 Pending 0 7m
查看有关 Pod 的详细信息,包含事件:
kubectl describe pod cpu-demo-2 --namespace=cpu-example
输出显示由于节点上的 CPU 资源不足,无法调度容器:
Events:
Reason Message
------ -------
FailedScheduling No nodes are available that match all of the following predicates:: Insufficient cpu (3).
删除你的 Pod:
kubectl delete pod cpu-demo-2 --namespace=cpu-example
如果不指定 CPU 限制
如果你没有为容器指定 CPU 限制,则会发生以下情况之一:
-
容器在可以使用的 CPU 资源上没有上限。因而可以使用所在节点上所有的可用 CPU 资源。
-
容器在具有默认 CPU 限制的名字空间中运行,系统会自动为容器设置默认限制。 集群管理员可以使用 LimitRange 指定 CPU 限制的默认值。
如果你设置了 CPU 限制但未设置 CPU 请求
如果你为容器指定了 CPU 限制值但未为其设置 CPU 请求,Kubernetes 会自动为其 设置与 CPU 限制相同的 CPU 请求值。类似的,如果容器设置了内存限制值但未设置 内存请求值,Kubernetes 也会为其设置与内存限制值相同的内存请求。
CPU 请求和限制的初衷
通过配置你的集群中运行的容器的 CPU 请求和限制,你可以有效利用集群上可用的 CPU 资源。 通过将 Pod CPU 请求保持在较低水平,可以使 Pod 更有机会被调度。 通过使 CPU 限制大于 CPU 请求,你可以完成两件事:
-
Pod 可能会有突发性的活动,它可以利用碰巧可用的 CPU 资源。
-
Pod 在突发负载期间可以使用的 CPU 资源数量仍被限制为合理的数量。
清理
删除名字空间:
kubectl delete namespace cpu-example