Dr. Yoshinori Ohsumi, the 2016 Nobel Prize Winner in Physiology and Medicine, reported autophagy - a cellular physiological phenomenon of a highly conserved pathway for degradation. It was immediately considered as a new strategy for cancer treatment and therefore attention by scientists to study the details of its mechanism. Therefore, the understanding of biomolecular interactions in autophagy becomes very critical and the development of organic dyes with specific functionality is an important but challenging task.
In this study, elegant syntheses of heterocyclic molecules structure were first reported and endowed specific photophysical properties to enable the in vivo bioimaging. According to the results of simulation, a series of DQI derivatives with tailored emission wavelengths ranging from 450 to 700 nm have been designed and synthesized. To selectively monitor organelles of interest, four of the above derivatives were selected and used in the construction of subcellular localized small molecule fluorescent probes. Successfully, lysosome tracker probes (Lyso-DQI), mitochondria tracker probe (Mito-DQI), endoplasmic reticulum tracker probe (ER-DQI) and plasma membrane tracker probe (PM-DQI) have been developed and all well agreed with commercially available organelle trackers. In addition, a series of fluorescent probes with adjustable emission synthesized in this work could be excited by a single wavelength, which allow a multiple targeting of biomolecules of interest. Finally, the DQI probes developed in this study promised an in vivo monitoring of mitochondrial autophagy under hypoxic conditions.
論文審定書........................................................................................................i
論文公開授權書...............................................................................................ii
論文提要..........................................................................................................iii
序文與致謝......................................................................................................iv
中文摘要...........................................................................................................v
Abstract............................................................................................................vi
目錄.................................................................................................................vii
圖目錄...............................................................................................................x
表目錄...........................................................................................................xvii
流程圖目錄..................................................................................................xviii
縮寫表............................................................................................................xxi
第一章 緒論......................................................................................................1
1.1 光學成像與生醫影像 ( Optical Imagine and Biomedical Imaging )........1
1.1.1 單一活細胞成像 ( Live Single Cell Image ).............................................3
1.1.2 螢光成像顯影試劑 ( Fluorescent Imaging Agent )...............................5
1.1.3 螢光標記基團 ( Fluorescent Labeling Group ).....................................13
1.1.4 螢光探針設計 ( Modular Design of Fluorescent Probes )....................44
1.1.5 胞器成像螢光探針 ( Fluorescent Probes for Organelle Imaging )......58
1.1.6 細胞螢光影像的現況與挑戰................................................................72
1.2 研究動機...................................................................................................73
1.2.1 實驗室已開發之雜環分子合成方法....................................................73
1.2.2 研究目標................................................................................................81
第二章 研究過程與結果討論........................................................................83
2.1 銠(II)催化的脫氮環化法合成四氫喹啉並應用於天然物之類似物的合成.................................................................................................................83
2.1.1 四氫喹啉核心的天然物結構與其生物活性........................................83
2.1.2 文獻已知的四氫喹啉核心結構合成方法............................................84
2.1.3 Ts-triazole benzylamine (4) 的製備......................................................88
2.1.4 銠金屬催化初步測試與機制推測........................................................89
2.1.5 一鍋化的條件最佳化篩選....................................................................91
2.1.6 tetrahydroisoquinoline 衍生物的合成................................................92
2.1.7 tetrahydroisoquinoline 核心的生物鹼全合成....................................95
2.1.8 小結......................................................................................................120
2.2 金 (I) -硫醇寡聚物於水相環境中硝基芳香化合物的氫化及有機催化合成雜環的應用...............................................................................................124
2.2.1 硝基芳香族化合物還原條件的文獻探討..........................................124
2.2.2 金屬奈米粒子產氫條件的測試..........................................................125
2.2.3 利用金(I)-硫醇寡聚物進行硝基芳香化合物氫化測試與合成應用.128
2.2.4 小結......................................................................................................134
2.3 銅 (II) 催化合成二氫喹啉-4-亞胺與生醫影像試劑開發......................135
2.3.1 二氫喹啉-4-亞胺光物理性質之文獻回顧與探討............................135
2.3.2 二氫喹啉-4-亞胺光物理性質的調控................................................139
2.3.3 以二氫喹啉螢光團合成碳量子點.....................................................178
2.3.4 螢光探針之胞器顯影試劑的開發.....................................................184
2.3.5 Liposome-DQI 光物理性質的探討....................................................204
2.3.6 螢光探針之胞器染色的測試..............................................................212
2.3.7 缺氧條件下的多重胞器細胞觀察......................................................233
第三章 結論與未來展望..............................................................................240
第四章 引用文獻..........................................................................................244
第五章 實驗步驟與光譜數據......................................................................266
第六章 光譜附圖..........................................................................................433
1.Ntziachristos, V.; Ripoll, J.; Wang, L. V.; Weissleder, R., Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 2005, 23 (3), 313-320.
2.Mulder, W. J. M.; Jaffer, F. A.; Fayad, Z. A.; Nahrendorf, M., Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 2014, 6 (239), 239sr1-239sr1.
3.Steiner, U. In Chapter 2 Fundamentals of Photophysics, Photochemistry, and Photobiology, 2013.
4.Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281 (5385), 2013-2016.
5.Williams, R. H.; Patterson, M. H., Fermi level pinning at metal‐CdTe interfaces. Appl. Phys. Lett. 1982, 40 (6), 484-486.
6.Davis, P. W.; Shilliday, T. S., Some Optical Properties of Cadmium Telluride. Phys. Rev. 1960, 118 (4), 1020-1022.
7.Blakemore, J. S., Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 1982, 53 (10), R123-R181.
8.Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115 (19), 8706-8715.
9.R.E.I. Schropp, B. S., A.M. Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath, Hot Wire CVD of Heterogeneous and Polycrystalline Silicon Semiconducting Thin Films for Applications in Thin Film Transistors and Solar Cells. Materials physics and mechanics
10.Peter the Great St. Petersburg Polytechnic University, 2000.
11.Cho, A. Y.; Arthur, J. R., Molecular beam epitaxy. Prog. Solid. State Ch. 1975, 10, 157-191.
12.Chen, Y.; Washburn, J., Structural Transition in Large-Lattice-Mismatch Heteroepitaxy. Phys. Rev. Lett. 1996, 77 (19), 4046-4049.
13.Takagahara, T.; Takeda, K., Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 1992, 46 (23), 15578-15581.
14.Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307 (5709), 538.
15.Lim, S. Y.; Shen, W.; Gao, Z., Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44 (1), 362-381.
16.Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B., Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew. Chem. Int. Ed. 2013, 52 (14), 3953-3957.
17.Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B., Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3 (23), 5976-5984.
18.Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128 (24), 7756-7757.
19.Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W., Carbon dots: surface engineering and applications. J. Mater. Chem. B 2016, 4 (35), 5772-5788.
20.Qu, X.; Li, Y.; Li, L.; Wang, Y.; Liang, J.; Liang, J., Fluorescent Gold Nanoclusters: Synthesis and Recent Biological Application. J. Nanomater. 2015, 2015, 784097.
21.Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T., Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging. Anal. Chem. 2015, 87 (1), 216-229.
22.Han, H.; Huang, Z.; Lee, W., Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 2014, 9 (3), 271-304.
23.Cheng-An, J. L.; Chih-Hsien, L.; Jiun-Tai, H.; Wan-Chun, Y.; Hong-Zhi, Y.; Jimmy, K. L.; Ralph, S.; Hsueh-Hsiao, W.; Hung, I. Y.; Wolfgang, J. P.; Walter, H. C. In Synthesis and surface modification of highly fluorescent gold nanoclusters and their exploitation for cellular labeling, Proc.SPIE, 2010.
24.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury (II). Angew. Chem. Int. Ed. 2007, 46 (36), 6824-6828.
25.Wu, Z.; Jin, R., On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010, 10 (7), 2568-2573.
26.You, J.-G.; Tseng, W.-L., Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Anal. Chim. Acta 2019, 1078, 101-111.
27.Xie, X.; Zhang, Y.; Li, F.; Lv, T.; Li, Z.; Chen, H.; Jia, L.; Gao, Y., Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. Curr. Cancer Drug Targets 2019, 19 (4), 257-276.
28.Tsien, R. Y., THE GREEN FLUORESCENT PROTEIN. Annu. Rev. Biochem. 1998, 67 (1), 509-544.
29.Ormö, M.; Cubitt Andrew, B.; Kallio, K.; Gross Larry, A.; Tsien Roger, Y.; Remington, S. J., Crystal Structure of the Aequorea victoria Green Fluorescent Protein. Science 1996, 273 (5280), 1392-1395.
30.Pakhomov, A. A.; Martynov, V. I., GFP Family: Structural Insights into Spectral Tuning. Chem. Biol. 2008, 15 (8), 755-764.
31.Day, R. N.; Davidson, M. W., The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 2009, 38 (10), 2887-2921.
32.Dean, K. M.; Palmer, A. E., Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 2014, 10 (7), 512-523.
33.Shcherbakova, D. M.; Hink, M. A.; Joosen, L.; Gadella, T. W. J.; Verkhusha, V. V., An Orange Fluorescent Protein with a Large Stokes Shift for Single-Excitation Multicolor FCCS and FRET Imaging. J. Am. Chem. Soc. 2012, 134 (18), 7913-7923.
34.Hontani, Y.; Xia, F.; Xu, C., Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Sci. Adv. 2021, 7 (12), eabf3531.
35.Carlson, H. J.; Campbell, R. E., Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Curr. Opin. Biotechnol. 2009, 20 (1), 19-27.
36.Costantini, L. M.; Snapp, E. L., Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol. 2013, 32 (11), 622-627.
37.Stokes, G. G., XXX. On the change of refrangibility of light. Philos. Trans. R. Soc. Lond. 1852, 142, 463-562.
38.Weyesa, A.; Mulugeta, E., Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. RSC Adv. 2020, 10 (35), 20784-20793.
39.Liu, Q.; Li, G.-P.; Zhu, D.-J.; Xue, L.; Jiang, H., Design of quinoline-based fluorescent probe for the ratiometric detection of cadmium in aqueous media. Chin. Chem. Lett. 2013, 24 (6), 479-482.
40.Große, M.; Ruetalo, N.; Layer, M.; Hu, D.; Businger, R.; Rheber, S.; Setz, C.; Rauch, P.; Auth, J.; Fröba, M.; Brysch, E.; Schindler, M.; Schubert, U., Quinine Inhibits Infection of Human Cell Lines with SARS-CoV-2. Viruses 2021, 13 (4), 647.
41.Wolfbeis, O. S., Molecular Luminescence Spectroscopy. Methods and applications/By ed. Schulman SGNY: Willey and Sons 1985, 77 (Part 1), 167.
42.Shin, Y. C.; Lee, J. H.; Jeong, J.-E.; Kim, B.; Lee, E. J.; Jin, O. S.; Jung, T. G.; Lee, J. J.; Woo, H. Y.; Han, D.-W., Cell imaging and DNA delivery in fibroblastic cells by conjugated polyelectrolytes. Biotechnol. Appl. Biochem. 2013, 60 (6), 580-588.
43.Bucevičius, J.; Lukinavičius, G.; Gerasimaitė, R., The Use of Hoechst Dyes for DNA Staining and Beyond. Chemosensors 2018, 6 (2), 18.
44.Biancardi, A.; Biver, T.; Secco, F.; Mennucci, B., An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools. Phys. Chem. Chem. Phys. 2013, 15 (13), 4596-4603.
45.Li, J.; Zhang, C.-F.; Yang, S.-H.; Yang, W.-C.; Yang, G.-F., A Coumarin-Based Fluorescent Probe for Selective and Sensitive Detection of Thiophenols and Its Application. Anal. Chem. 2014, 86 (6), 3037-3042.
46.Pan, J.; Zhang, Y.; Xu, J.; Liu, J.; Zeng, L.; Bao, G.-M., A smart fluorescent probe for simultaneous detection of GSH and Cys in human plasma and cells. RSC Adv. 2015, 5 (118), 97781-97787.
47.Haugland, R. P. The handbook: a guide to fluorescent probes and labeling technologies. Univerza v Ljubljani, Fakulteta za farmacijo, 2005.
48.Sun, W.-C.; Gee, K. R.; Klaubert, D. H.; Haugland, R. P., Synthesis of Fluorinated Fluoresceins. J. Org. Chem. 1997, 62 (19), 6469-6475.
49.E., C. A. H. C. H. J. J. R. N. B., The Demonstration of Pneumococcal Antigen in Tissues by the Use of Fluorescent Antibody. J. Immunol. 1942, 45 (3), 159-170.
50.Beija, M.; Afonso, C. A. M.; Martinho, J. M. G., Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009, 38 (8), 2410-2433.
51.Yuan, L.; Lin, W.; Feng, Y., A rational approach to tuning the pKa values of rhodamines for living cell fluorescence imaging. Org. Biomol. Chem. 2011, 9 (6), 1723-1726.
52.Knorr, L.; Lange, H., Ueber die Bildung von Pyrrolderivaten aus Isonitrosoketonen. Ber. Dtsch. Chem. Ges. 1902, 35 (3), 2998-3008.
53.Karolin, J.; Johansson, L. B. A.; Strandberg, L.; Ny, T., Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride (BODIPY) Derivatives in Liquids, Lipid Membranes, and Proteins. J. Am. Chem. Soc. 1994, 116 (17), 7801-7806.
54.Loudet, A.; Burgess, K., BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107 (11), 4891-4932.
55.Jiao, L.; Yu, C.; Uppal, T.; Liu, M.; Li, Y.; Zhou, Y.; Hao, E.; Hu, X.; Vicente, M. G. H., Long wavelength red fluorescent dyes from 3,5-diiodo-BODIPYs. Org. Biomol. Chem. 2010, 8 (11), 2517-2519.
56.Jiang, X.-D.; Gao, R.; Yue, Y.; Sun, G.-T.; Zhao, W., A NIR BODIPY dye bearing 3,4,4a-trihydroxanthene moieties. Org. Biomol. Chem. 2012, 10 (34), 6861-6865.
57.Zheng, Q.; Xu, G.; Prasad, P. N., Conformationally Restricted Dipyrromethene Boron Difluoride (BODIPY) Dyes: Highly Fluorescent, Multicolored Probes for Cellular Imaging. Chem. Eur. J. 2008, 14 (19), 5812-5819.
58.Kvach, M. V.; Ustinov, A. V.; Stepanova, I. A.; Malakhov, A. D.; Skorobogatyi, M. V.; Shmanai, V. V.; Korshun, V. A., A Convenient Synthesis of Cyanine Dyes: Reagents for the Labeling of Biomolecules. Eur. J. Org. Chem. 2008, 2008 (12), 2107-2117.
59.Li, Q.; Tan, J.; Peng, B.-X., Synthesis and Characterization of Heptamethine Cyanine Dyes. Molecules 1997, 2 (6), 91-98.
60.Strekowski, L., Heterocyclic Polymethine Dyes. Springer, Berlin, Heidelberg: USA, 2008; p XVI, 241.
61.Bilici, K.; Cetin, S.; Aydındogan, E.; Yagci Acar, H.; Kolemen, S., Recent Advances in Cyanine-Based Phototherapy Agents. Front. Chem. 2021, 9 (444), 707876.
62.Klymchenko, A. S., Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 2017, 50 (2), 366-375.
63.Loving, G. S.; Sainlos, M.; Imperiali, B., Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol 2010, 28 (2), 73-83.
64.Bureš, F., Fundamental aspects of property tuning in push–pull molecules. RSC Adv. 2014, 4 (102), 58826-58851.
65.Kucherak, O. A.; Didier, P.; Mély, Y.; Klymchenko, A. S., Fluorene Analogues of Prodan with Superior Fluorescence Brightness and Solvatochromism. J. Phys. Chem. Lett. 2010, 1 (3), 616-620.
66.Zhuang, Y.-D.; Chiang, P.-Y.; Wang, C.-W.; Tan, K.-T., Environment-Sensitive Fluorescent Turn-On Probes Targeting Hydrophobic Ligand-Binding Domains for Selective Protein Detection. Angew. Chem. Int. Ed. 2013, 52 (31), 8124-8128.
67.Chen, H.-J.; Chew, C. Y.; Chang, E.-H.; Tu, Y.-W.; Wei, L.-Y.; Wu, B.-H.; Chen, C.-H.; Yang, Y.-T.; Huang, S.-C.; Chen, J.-K.; Chen, I. C.; Tan, K.-T., S-Cis Diene Conformation: A New Bathochromic Shift Strategy for Near-Infrared Fluorescence Switchable Dye and the Imaging Applications. J. Am. Chem. Soc. 2018, 140 (15), 5224-5234.
68.Kwon, J. E.; Park, S. Y., Advanced Organic Optoelectronic Materials: Harnessing Excited-State Intramolecular Proton Transfer (ESIPT) Process. Adv. Mater. 2011, 23 (32), 3615-3642.
69.Sedgwick, A. C.; Wu, L.; Han, H.-H.; Bull, S. D.; He, X.-P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J., Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47 (23), 8842-8880.
70.Shynkar, V. V.; Klymchenko, A. S.; Kunzelmann, C.; Duportail, G.; Muller, C. D.; Demchenko, A. P.; Freyssinet, J.-M.; Mely, Y., Fluorescent Biomembrane Probe for Ratiometric Detection of Apoptosis. J. Am. Chem. Soc. 2007, 129 (7), 2187-2193.
71.Haidekker, M. A.; Theodorakis, E. A., Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 2010, 4 (1), 11.
72.Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chem. Soc. Rev. 2011, 40 (11), 5361-5388.
73.Shi, H.; Liu, J.; Geng, J.; Tang, B. Z.; Liu, B., Specific Detection of Integrin αvβ3 by Light-Up Bioprobe with Aggregation-Induced Emission Characteristics. J. Am. Chem. Soc. 2012, 134 (23), 9569-9572.
74.Lee, H.; Hancock, R. D.; Lee, H.-S., Role of Fluorophore–Metal Interaction in Photoinduced Electron Transfer (PET) Sensors: Time-Dependent Density Functional Theory (TDDFT) Study. J. Phys. Chem. Lett. A 2013, 117 (50), 13345-13355.
75.Sun, W.; Li, M.; Fan, J.; Peng, X., Activity-Based Sensing and Theranostic Probes Based on Photoinduced Electron Transfer. Acc. Chem. Res. 2019, 52 (10), 2818-2831.
76.Fan, J.; Peng, X.; Wu, Y.; Lu, E.; Hou, J.; Zhang, H.; Zhang, R.; Fu, X., A new PET fluorescent sensor for Zn2+. J. Lumin. 2005, 114 (2), 125-130.
77.Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y., Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(ii) in living cells. Org. Biomol. Chem. 2005, 3 (8), 1387-1392.
78.Jun, J. V.; Chenoweth, D. M.; Petersson, E. J., Rational design of small molecule fluorescent probes for biological applications. Org. Biomol. Chem. 2020, 18 (30), 5747-5763.
79.Lavis, L. D.; Raines, R. T., Bright Ideas for Chemical Biology. ACS Chem. Biol. 2008, 3 (3), 142-155.
80.O’Connor, L. J.; Mistry, I. N.; Collins, S. L.; Folkes, L. K.; Brown, G.; Conway, S. J.; Hammond, E. M., CYP450 Enzymes Effect Oxygen-Dependent Reduction of Azide-Based Fluorogenic Dyes. ACS Cent. Sci. 2017, 3 (1), 20-30.
81.Yuan, L.; Lin, W.; Zheng, K.; Zhu, S., FRET-Based Small-Molecule Fluorescent Probes: Rational Design and Bioimaging Applications. Acc. Chem. Res. 2013, 46 (7), 1462-1473.
82.Casey, J. R.; Grinstein, S.; Orlowski, J., Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11 (1), 50-61.
83.Fu, M.; Xiao, Y.; Qian, X.; Zhao, D.; Xu, Y., A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom. Chem Comm 2008, (15), 1780-1782.
84.Kushida, Y.; Nagano, T.; Hanaoka, K., Silicon-substituted xanthene dyes and their applications in bioimaging. Analyst 2015, 140 (3), 685-695.
85.Choi, A.; Miller, S. C., Silicon Substitution in Oxazine Dyes Yields Near-Infrared Azasiline Fluorophores That Absorb and Emit beyond 700 nm. Org. Lett. 2018, 20 (15), 4482-4485.
86.Dejouy, G.; Laly, M.; Valverde, I. E.; Romieu, A., Synthesis, stability and spectral behavior of fluorogenic sulfone-pyronin and sulfone-rosamine dyes. Dyes Pigm. 2018, 159, 262-274.
87.Choi, S.-K.; Kim, J.; Kim, E., Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes. Molecules 2021, 26 (7), 1868.
88.Wieczorek, A.; Werther, P.; Euchner, J.; Wombacher, R., Green- to far-red-emitting fluorogenic tetrazine probes – synthetic access and no-wash protein imaging inside living cells. Chem. Sci. 2017, 8 (2), 1506-1510.
89.Matikonda, S. S.; Ivanic, J.; Gomez, M.; Hammersley, G.; Schnermann, M. J., Core remodeling leads to long wavelength fluoro-coumarins. Chem. Sci. 2020, 11 (28), 7302-7307.
90.Jun, J. V.; Petersson, E. J.; Chenoweth, D. M., Rational Design and Facile Synthesis of a Highly Tunable Quinoline-Based Fluorescent Small-Molecule Scaffold for Live Cell Imaging. J. Am. Chem. Soc. 2018, 140 (30), 9486-9493.
91.Schwartz, M. D. G. M. J. M. L. S. A. Spectral Imaging and Linear Unmixing. https://www.microscopyu.com/techniques/confocal/spectral-imaging-and-linear-unmixing.
92.Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev. 2010, 110 (5), 2620-2640.
93.Huang, T.; Phelps, C.; Wang, J.; Lin, L.-J.; Bittel, A.; Scott, Z.; Jacques, S.; Gibbs, S. L.; Gray, J. W.; Nan, X., Simultaneous Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral Imaging. Biophys. J. 2018, 114 (2), 301-310.
94.Ishow, E.; Brosseau, A.; Clavier, G.; Nakatani, K.; Tauc, P.; Fiorini-Debuisschert, C.; Neveu, S.; Sandre, O.; Léaustic, A., Multicolor Emission of Small Molecule-Based Amorphous Thin Films and Nanoparticles with a Single Excitation Wavelength. Chem. Mater. 2008, 20 (21), 6597-6599.
95.Zhang, H.; Fan, J.; Dong, H.; Zhang, S.; Xu, W.; Wang, J.; Gao, P.; Peng, X., Fluorene-derived two-photon fluorescent probes for specific and simultaneous bioimaging of endoplasmic reticulum and lysosomes: group-effect and localization. J. Mater. Chem. B 2013, 1 (40), 5450-5455.
96.Hu, F.; Cai, X.; Manghnani, P. N.; Kenry; Wu, W.; Liu, B., Multicolor monitoring of cellular organelles by single wavelength excitation to visualize the mitophagy process. Chem. Sci. 2018, 9 (10), 2756-2761.
97.Cheng, Y.; Sun, C.; Ou, X.; Liu, B.; Lou, X.; Xia, F., Dual-targeted peptide-conjugated multifunctional fluorescent probe with AIEgen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chem. Sci. 2017, 8 (6), 4571-4578.
98.Xu, W.; Zeng, Z.; Jiang, J.-H.; Chang, Y.-T.; Yuan, L., Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew. Chem. Int. Ed. 2016, 55 (44), 13658-13699.
99.Mandl, J.; Mészáros, T.; Bánhegyi, G.; Hunyady, L.; Csala, M., Endoplasmic reticulum: nutrient sensor in physiology and pathology. Trends Endocrinol. Metab. 2009, 20 (4), 194-201.
100.Hirschberg, C. B.; Robbins, P. W.; Abeijon, C., TRANSPORTERS OF NUCLEOTIDE SUGARS, ATP, AND NUCLEOTIDE SULFATE IN THE ENDOPLASMIC RETICULUM AND GOLGI APPARATUS. Annu. Rev. Biochem. 1998, 67 (1), 49-69.
101.Mattson, M. P.; LaFerla, F. M.; Chan, S. L.; Leissring, M. A.; Shepel, P. N.; Geiger, J. D., Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2000, 23 (5), 222-229.
102.Meinig, J. M.; Fu, L.; Peterson, B. R., Synthesis of Fluorophores that Target Small Molecules to the Endoplasmic Reticulum of Living Mammalian Cells. Angew. Chem. Int. Ed. 2015, 54 (33), 9696-9699.
103.Krebs, H.; Weitzman, P. Krebs’ citric acid cycle: half a century and still turning. London: Biochemical Society; ISBN 0-904498-22-0: 1987.
104.Cecchini, G., Function and Structure of Complex II of the Respiratory Chain. Annu. Rev. Biochem. 2003, 72 (1), 77-109.
105.Crofts, A. R., The Cytochrome bc1 Complex: Function in the Context of Structure. Annu. Rev. Physiol. 2004, 66 (1), 689-733.
106.Yoshikawa, S.; Muramoto, K.; Shinzawa-Itoh, K.; Aoyama, H.; Tsukihara, T.; Shimokata, K.; Katayama, Y.; Shimada, H., Proton pumping mechanism of bovine heart cytochrome c oxidase. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2006, 1757 (9), 1110-1116.
107.Nakamoto, R. K.; Baylis Scanlon, J. A.; Al-Shawi, M. K., The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys. 2008, 476 (1), 43-50.
108.Finney, L. A.; O''Halloran, T. V., Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors. Science 2003, 300 (5621), 931-936.
109.Lin, M. T.; Beal, M. F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443 (7113), 787-795.
110.Kadenbach, B., Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2003, 1604 (2), 77-94.
111.Doherty, G. J.; McMahon, H. T., Mechanisms of Endocytosis. Annu. Rev. Biochem. 2009, 78 (1), 857-902.
112.Rink, J.; Ghigo, E.; Kalaidzidis, Y.; Zerial, M., Rab Conversion as a Mechanism of Progression from Early to Late Endosomes. Cell 2005, 122 (5), 735-749.
113.Mindell, J. A., Lysosomal Acidification Mechanisms. Annu. Rev. Physiol. 2012, 74 (1), 69-86.
114.Mizushima, N.; Ohsumi, Y.; Yoshimori, T., Autophagosome Formation in Mammalian Cells. Cell Struct. Funct. 2002, 27 (6), 421-429.
115.Tekpli, X.; Rivedal, E.; Gorria, M.; Landvik, N. E.; Rissel, M.; Dimanche-Boitrel, M. T.; Baffet, G.; Holme, J. A.; Lagadic-Gossmann, D., The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis. Toxicol. Appl. Pharmacol. 2010, 242 (2), 231-240.
116.Collot, M.; Kreder, R.; Tatarets, A. L.; Patsenker, L. D.; Mely, Y.; Klymchenko, A. S., Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum. Chem Comm 2015, 51 (96), 17136-17139.
117.Collot, M.; Ashokkumar, P.; Anton, H.; Boutant, E.; Faklaris, O.; Galli, T.; Mély, Y.; Danglot, L.; Klymchenko, A. S., MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chem. Biol. 2019, 26 (4), 600-614.e7.
118.Terasaki, M.; Song, J.; Wong, J. R.; Weiss, M. J.; Chen, L. B., Localization of endoplasmic reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes. Cell 1984, 38 (1), 101-108.
119.Goujon, A.; Colom, A.; Straková, K.; Mercier, V.; Mahecic, D.; Manley, S.; Sakai, N.; Roux, A.; Matile, S., Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes. J. Am. Chem. Soc. 2019, 141 (8), 3380-3384.
120.Danylchuk, D. I.; Jouard, P.-H.; Klymchenko, A. S., Targeted Solvatochromic Fluorescent Probes for Imaging Lipid Order in Organelles under Oxidative and Mechanical Stress. J. Am. Chem. Soc. 2021, 143 (2), 912-924.
121.Rajagopal, B.; Chen, Y.-Y.; Chen, C.-C.; Liu, X.-Y.; Wang, H.-R.; Lin, P.-C., Cu(I)-Catalyzed Synthesis of Dihydropyrimidin-4-ones toward the Preparation of β- and β3-Amino Acid Analogues. J. Org. Chem. 2014, 79 (3), 1254-1264.
122.Rajagopal, B.; Chou, C.-H.; Chung, C.-C.; Lin, P.-C., Synthesis of Substituted 3-Indolylimines and Indole-3-carboxaldehydes by Rhodium (II)-Catalyzed Annulation. Org. Lett. 2014, 16 (14), 3752-3755.
123.Chen, Y.-Y.; Chen, K.-L.; Tyan, Y.-C.; Liang, C.-F.; Lin, P.-C., Synthesis of substituted 3-methylene-2,3-dihydrobenzofurans and 3-methylbenzofurans by rhodium (II)-catalyzed annulation. Tetrahedron 2015, 71 (36), 6210-6218.
124.Chou, C.-H.; Chen, Y.-Y.; Rajagopal, B.; Tu, H.-C.; Chen, K.-L.; Wang, S.-F.; Liang, C.-F.; Tyan, Y.-C.; Lin, P.-C., Thermally Induced Denitrogenative Annulation for the Synthesis of Dihydroquinolinimines and Chroman-4-imines. Chem. Asian J. 2016, 11 (5), 757-765.
125.Chou, C.-H.; Rajagopal, B.; Liang, C.-F.; Chen, K.-L.; Jin, D.-Y.; Chen, H.-Y.; Tu, H.-C.; Shen, Y.-Y.; Lin, P.-C., Synthesis and Photophysical Characterization of 2,3-Dihydroquinolin-4-imines: New Fluorophores with Color-Tailored Emission. Chem. Eur. J. 2018, 24 (5), 1112-1120.
126.Sygusch, J.; Brisse, F.; Hanessian, S.; Kluepfel, D., The molecular structure of naphthyridinomycin- a broad spectrum antibiotic. Tetrahedron Lett. 1974, 15 (46), 4021-4023.
127.Scott, J. D.; Williams, R. M., Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics. Chem. Rev. 2002, 102 (5), 1669-1730.
128.Moore, B. M.; Seaman, F. C.; Wheelhouse, R. T.; Hurley, L. H., Mechanism for the Catalytic Activation of Ecteinascidin 743 and Its Subsequent Alkylation of Guanine N2. J. Am. Chem. Soc. 1998, 120 (10), 2490-2491.
129.Bischler, A.; Napieralski, B., Zur Kenntniss einer neuen Isochinolinsynthese. Ber. Dtsch. Chem. Ges. 1893, 26 (2), 1903-1908.
130.Fodor, G.; Nagubandi, S., Correlation of the von Braun, Ritter, Bischler-Napieralski, Beckmann and Schmidt reactions via nitrilium salt intermediates. Tetrahedron 1980, 36 (10), 1279-1300.
131.Pictet, A.; Spengler, T., Über die Bildung von Isochinolin-derivaten durch Einwirkung von Methylal auf Phenyl-äthylamin, Phenyl-alanin und Tyrosin. Ber. Dtsch. Chem. Ges. 1911, 44 (3), 2030-2036.
132.Bobbitt, J. M.; Kiely, J. M.; Khanna, K. L.; Ebermann, R., Synthesis of Isoquinolines. III. A New Synthesis of 1,2,3,4-Tetrahydroisoquinolines1. J. Org. Chem. 1965, 30 (7), 2247-2250.
133.Kawai, N.; Abe, R.; Matsuda, M.; Uenishi, J. i., Synthesis of Chiral 1-Substituted Tetrahydroisoquinolines by the Intramolecular 1,3-Chirality Transfer Reaction Catalyzed by Bi (OTf)3. J. Org. Chem. 2011, 76 (7), 2102-2114.
134.Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H., Total Synthesis of (−)-Quinocarcin by Gold(I)-Catalyzed Regioselective Hydroamination. Angew. Chem. Int. Ed. 2012, 51 (36), 9169-9172.
135.Song, G.; Chen, D.; Su, Y.; Han, K.; Pan, C.-L.; Jia, A.; Li, X., Isolation of Azomethine Ylides and Their Complexes: Iridium (III)-Mediated Cyclization of Nitrone Substrates Containing Alkynes. Angew. Chem. Int. Ed. 2011, 50 (34), 7791-7796.
136.Zhao, W.; Zhang, J., Rhodium-Catalyzed Tandem Heterocyclization and Carbonylative [(3+2)+1] Cyclization of Diyne-enones. Org. Lett. 2011, 13 (4), 688-691.
137.Yang, X.; Liu, S.; Yu, S.; Kong, L.; Lan, Y.; Li, X., Redox-Neutral Access to Isoquinolinones via Rhodium (III)-Catalyzed Annulations of O-Pivaloyl Oximes with Ketenes. Org. Lett. 2018, 20 (9), 2698-2701.
138.Miura, T.; Funakoshi, Y.; Murakami, M., Intramolecular Dearomatizing [3 + 2] Annulation of α-Imino Carbenoids with Aryl Rings Furnishing 3,4-Fused Indole Skeletons. J. Am. Chem. Soc. 2014, 136 (6), 2272-2275.
139.Shipilovskikh, S. A.; Rubtsov, A. E.; Malkov, A. V., Oxidative Dehomologation of Aldehydes with Oxygen as a Terminal Oxidant. Org. Lett. 2017, 19 (24), 6760-6762.
140.林嘉威, 以二價銠催化脫氮合成四氫異喹啉衍生物 國立中山大學化學系 碩士論文. 2018.
141.Wagner, H.; Burghart, J.; Hull, W. E., Neue macrocyclische spermidinalkaloide aus maytenus mossambicensis (klotsch) blakelock. Tetrahedron Lett. 1978, 19 (41), 3893-3896.
142.Iida, H.; Fukuhara, K.; Murayama, Y.; Machiba, M.; Kikuchi, T., Total synthesis of (+-).-isocyclocelabenzene. J. Org. Chem. 1986, 51 (24), 4701-4703.
143.Schultz, K.; Hesse, M., Total Synthesis of (+)-(8S,13R)-Cyclocelabenzine. Helv. Chim. Acta 1996, 79 (5), 1295-1304.
144.Cholleton, N.; Zard, S. Z., A convergent synthesis of 4-substituted 1,2,3,4-tetrahydroisoquinolin-1-ones. Tetrahedron Lett. 1998, 39 (40), 7295-7298.
145.Chen, C.-C.; Wang, S.-F.; Su, Y.-Y.; Lin, Y. A.; Lin, P.-C., Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α3β-Tetrapeptide Analogues. Chem. Asian J. 2017, 12 (12), 1326-1337.
146.Gilbert, J. C.; Weerasooriya, U., Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner-Emmons modification of the Wittig reaction. A facile synthesis of alkynes. J. Org. Chem. 1982, 47 (10), 1837-1845.
147.Dhameja, M.; Pandey, J., Bestmann–Ohira Reagent: A Convenient and Promising Reagent in the Chemical World. Asian J. Org. Chem. 2018, 7 (8), 1502-1523.
148.Nyasse, B.; Grehn, L.; Ragnarsson, U., Mild, efficient cleavage of arenesulfonamides by magnesium reduction. Chem Comm 1997, (11), 1017-1018.
149.Yang, T.; Cui, H.; Zhang, C.; Zhang, L.; Su, C.-Y., Porous Metal–Organic Framework Catalyzing the Three-Component Coupling of Sulfonyl Azide, Alkyne, and Amine. Inorg. Chem. 2013, 52 (15), 9053-9059.
150.Kim, M. J.; Kim, B. R.; Lee, C. Y.; Kim, J., N-Sulfonyl amidine synthesis via three-component coupling reaction using heterogeneous copper catalyst derived from metal-organic frameworks. Tetrahedron Lett. 2016, 57 (36), 4070-4073.
151.Chung, J. Y. L.; Meng, D.; Shevlin, M.; Gudipati, V.; Chen, Q.; Liu, Y.; Lam, Y.-h.; Dumas, A.; Scott, J.; Tu, Q.; Xu, F., Diastereoselective FeCl3·6H2O/NaBH4 Reduction of Oxime Ether for the Synthesis of β-Lactamase Inhibitor Relebactam. J. Org. Chem. 2020, 85 (2), 994-1000.
152.Ravinder, B.; Rajeswar Reddy, S.; Panasa Reddy, A.; Bandichhor, R., Amide activation by TMSCl: reduction of amides to amines by LiAlH4 under mild conditions. Tetrahedron Lett. 2013, 54 (36), 4908-4913.
153.蘇庸宇, 一價銅催化之環狀四胜肽固相合成 國立中山大學化學系 碩士論文. 2017.
154.陳駿其, 一價銅催化脫氮合成環狀四胜肽及新穎質譜分析平台之開發 國立中山大學化學系 博士論文. 2015.
155.Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S., A Facile Access to N-Sulfonylimidates and Their Synthetic Utility for the Transformation to Amidines and Amides. Org. Lett. 2006, 8 (7), 1347-1350.
156.Lv, Z.; Wang, B.; Hu, Z.; Zhou, Y.; Yu, W.; Chang, J., Synthesis of Quinazolines from N,N’-Disubstituted Amidines via I2/KI-Mediated Oxidative C–C Bond Formation. J. Org. Chem. 2016, 81 (20), 9924-9930.
157.Zinin, N., Beschreibung einiger neuer organischer Basen, dargestellt durch die Einwirkung des Schwefelwasserstoffes auf Verbindungen der Kohlenwasserstoffe mit Untersalpetersäure. J. für Praktische Chem. 1842, 27 (1), 140-153.
158.Basu, M. K.; Becker, F. F.; Banik, B. K., Ultrasound-promoted highly efficient reduction of aromatic nitro compounds to the aromatic amines by samarium/ammonium chloride. Tetrahedron Lett. 2000, 41 (30), 5603-5606.
159.Yamabe, S.; Yamazaki, S., A DFT study of reduction of nitrobenzene to aniline with SnCl2 and hydrochloric acid. J. Phys. Org. Chem. 2016, 29 (7), 361-367.
160.Minkina, V. G.; Shabunya, S. I.; Kalinin, V. I.; Martynenko, V. V.; Smirnova, A. L., Stability of alkaline aqueous solutions of sodium borohydride. Int. J. Hydrog. Energy 2012, 37 (4), 3313-3318.
161.Zhang, K.; Suh, J. M.; Choi, J.-W.; Jang, H. W.; Shokouhimehr, M.; Varma, R. S., Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water. ACS Omega 2019, 4 (1), 483-495.
162.Sun, J.; Wang, W.; Yue, Q.; Ma, C.; Zhang, J.; Zhao, X.; Song, Z., Review on microwave–metal discharges and their applications in energy and industrial processes. Appl. Energy 2016, 175, 141-157.
163.You, J.-G.; Jin, D.-Y.; Tseng, W.-B.; Tseng, W.-L.; Lin, P.-C., Gold(I)-Thiolate Oligomers for Catalytic Hydrogenation of Nitroaromatics in Aqueous and Organic Medium. ChemCatChem 2020, 12 (18), 4558-4567.
164.Li, G.; Jiang, D.-e.; Kumar, S.; Chen, Y.; Jin, R., Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure. ACS Catal. 2014, 4 (8), 2463-2469.
165.周志鴻, 磺醯三唑中間體引導之雜環分子合成及其在生物螢光影像之應用 國立中山大學化學系 博士論文. 2018.
166.Bredas, J.-L., Mind the gap! Mater. Horizons 2014, 1 (1), 17-19.
167.Majek, M.; Jacobi von Wangelin, A., Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. Acc. Chem. Res. 2016, 49 (10), 2316-2327.
168.Leonat, L.; Beatrice Gabriela, S.; Bran̂zoi, I. V., Cyclic voltammetry for energy levels estimation of organic materials. UPB Scientific Bulletin, Series B: Chem. and Mater. Sci. 2013, 75, 111-118.
169.Srivastava, V.; Singh, P. P., Eosin Y catalysed photoredox synthesis: a review. RSC Adv. 2017, 7 (50), 31377-31392.
170.Balan, L.; Malval, J.-P.; Lougnot, D.-J., In Situ Photochemically assisted Synthesis of Silver Nanoparticles in Polymer Matrixes. 2010.
171.Chen, T.-H.; Tseng, W.-L., Self-Assembly of Monodisperse Carbon Dots into High-Brightness Nanoaggregates for Cellular Uptake Imaging and Iron (III) Sensing. Anal. Chem. 2017, 89 (21), 11348-11356.
172.Jia, X.; Li, J.; Wang, E., One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4 (18), 5572-5575.
173.Lopes, S. C. A.; Giuberti, C.; Rocha, T. G. R.; Ferreira, D. S.; Leite, E. A.; Oliveira, M. In Chapter 4 Liposomes as Carriers of Anticancer Drugs, 2013.
174.Woodbury, D. J.; Richardson, E. S.; Grigg, A. W.; Welling, R. D.; Knudson, B. H., Reducing Liposome Size with Ultrasound: Bimodal Size Distributions. J. Liposome Res. 2006, 16 (1), 57-80.
175.Dikpati, A.; Mohammadi, F.; Greffard, K.; Quéant, C.; Arnaud, P.; Bastiat, G.; Rudkowska, I.; Bertrand, N., Residual Solvents in Nanomedicine and Lipid-Based Drug Delivery Systems: a Case Study to Better Understand Processes. Pharm. Res. 2020, 37 (8), 149.
176.Colas, J.-C.; Shi, W.; Rao, V. S. N. M.; Omri, A.; Mozafari, M. R.; Singh, H., Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 2007, 38 (8), 841-847.
177.Vemuri, S.; Rhodes, C. T., Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 1995, 70 (2), 95-111.
178.Badr, A. Extrusion for unilamellar liposome formation. https://www.manufacturingchemist.com/news/article_page/Extrusion_for_unilamellar_liposome_formation/123448.
179.Andra, V.; Bhatraju, L.; Ruddaraju, L., A Comprehensive Review on Novel Liposomal Methodologies, Commercial Formulations, Clinical Trials and Patents. BioNanoScience 2022.
180.Lee, P.; Chandel, N. S.; Simon, M. C., Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020, 21 (5), 268-283.
181.Martínez-Reyes, I.; Chandel, N. S., Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11 (1), 102.
182.Ding, S.; Hong, Y., The fluorescence toolbox for visualizing autophagy. Chem. Soc. Rev. 2020, 49 (22), 8354-8389.
183.Liu, Y.; Zhou, J.; Wang, L.; Hu, X.; Liu, X.; Liu, M.; Cao, Z.; Shangguan, D.; Tan, W., A Cyanine Dye to Probe Mitophagy: Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells. J. Am. Chem. Soc. 2016, 138 (38), 12368-12374.
184.Li, X.; Hu, Y.; Li, X.; Ma, H., Mitochondria-Immobilized Near-Infrared Ratiometric Fluorescent pH Probe to Evaluate Cellular Mitophagy. Anal. Chem. 2019, 91 (17), 11409-11416.
185.鍾彥柔, 抗體-高分子藥物共聚物之高分子長度控制探討 國立中山大學化學系 碩士論文. 2019.