添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
. Author manuscript; available in PMC: 2017 Aug 13. Published in final edited form as: Nat Neurosci. 2017 Feb 13;20(4):550–558. doi: 10.1038/nn.4498
  • Search in PMC
  • Search in PubMed
  • View in NLM Catalog
  • Add to search
  • Retinal Origin of Direction Selectivity in the Superior Colliculus

    Xuefeng Shi 4 Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
    Find articles by Xuefeng Shi 1, 4, * , Jad Barchini
    Find articles by Jad Barchini 1, * , Hector Acaron Ledesma
    Find articles by Hector Acaron Ledesma 2 , David Koren
    Find articles by David Koren 2 , Yanjiao Jin 5 General Hospital, Tianjin Medical University, Tianjin 300052, China
    Find articles by Yanjiao Jin 1, 5 , Xiaorong Liu 3 Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611, USA
    Find articles by Xiaorong Liu 1, 3 , Wei Wei
    Find articles by Wei Wei 2 , Jianhua Cang
    Find articles by Jianhua Cang
  • 1 Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
    2 Department of Neurobiology, The University of Chicago, Illinois 60637, USA
    3 Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611, USA
    4 Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
    5 General Hospital, Tianjin Medical University, Tianjin 300052, China

    Correspondence should be addressed to J.C. ( [email protected] )

    *

    These authors contributed equally to this work.

    Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

    PMCID: PMC5374021  NIHMSID: NIHMS843526  PMID: 28192394

    Acknowledgments

    We thank Xinyu Zhao and Hui Chen for their help with data analysis. For the use of GCaMP6s, we gratefully acknowledge Vivek Jayaraman, Rex A. Kerr, Douglas S. Kim, Loren L. Looger, Karel Svoboda from the GENIE Project, Janelia Farm Research Campus, Howard Hughes Medical Institute. This research was supported by US National Institutes of Health (NIH) grants (EY026286 to J.C. and X.L., and EY024016 to W.W.), National Natural Science Foundation of China (NSFC) grant (81371049 to X.S.), China Scholarship Council (CSC) scholarship (201309120003 to X.S.) and Tianjin “131” Innovative Talent Project first-level talent scholarship (to X.S.).

    Footnotes

    Author Contributions : X.S., J.B., X.L., W.W. and J.C. designed the experiments. X.S. performed in vivo whole-cell recording experiments and analyzed the data. J.B. performed in vivo 2-photon imaging experiments and analyzed the data. H.A.L. and D.K. performed retinal imaging experiments and analyzed the data. J.C. performed intrinsic imaging. Y.J. performed histology. W.W. and J.C. guided data analysis and oversaw the project. All authors discussed the results and wrote the manuscript.

    The authors declare no competing financial interests.

    References

    1. Wei W, Feller MB. Organization and development of direction-selective circuits in the retina. Trends Neurosci. 2011;34:638–645. doi: 10.1016/j.tins.2011.08.002. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 2. Vaney DI, Sivyer B, Taylor WR. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci. 2012;13:194–208. doi: 10.1038/nrn3165. [ DOI ] [ PubMed ] [ Google Scholar ] 3. Priebe NJ, Ferster D. Mechanisms of neuronal computation in mammalian visual cortex. Neuron. 2012;75:194–208. doi: 10.1016/j.neuron.2012.06.011. S0896-6273(12)00571-5 [pii] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 4. Cang J, Feldheim DA. Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci. 2013;36:51–77. doi: 10.1146/annurev-neuro-062012-170341. [ DOI ] [ PubMed ] [ Google Scholar ] 5. Gandhi NJ, Katnani HA. Motor functions of the superior colliculus. Annu Rev Neurosci. 2011;34:205–231. doi: 10.1146/annurev-neuro-061010-113728. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 6. May PJ. The mammalian superior colliculus: laminar structure and connections. Prog Brain Res. 2006;151:321–378. doi: 10.1016/S0079-6123(05)51011-2. [ DOI ] [ PubMed ] [ Google Scholar ] 7. Huberman AD, Niell CM. What can mice tell us about how vision works? Trends Neurosci. 2011;34:464–473. doi: 10.1016/j.tins.2011.07.002. S0166-2236(11)00106-8 [pii] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 8. Ellis EM, Gauvain G, Sivyer B, Murphy GJ. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J Neurophysiol. 2016;116:602–610. doi: 10.1152/jn.00227.2016. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 9. Albano JE, Humphrey AL, Norton TT. Laminar organization of receptive-field properties in tree shrew superior colliculus. J Neurophysiol. 1978;41:1140–1164. doi: 10.1152/jn.1978.41.5.1140. [ DOI ] [ PubMed ] [ Google Scholar ] 10. McIlwain JT, Buser P. Receptive fields of single cells in the cat’s superior colliculus. Exp Brain Res. 1968;5:314–325. doi: 10.1007/BF00235906. [ DOI ] [ PubMed ] [ Google Scholar ] 11. Rhoades RW, Chalupa LM. Directional selectivity in the superior colliculus of the golden hamster. Brain Res. 1976;118:334–338. doi: 10.1016/0006-8993(76)90721-6. [ DOI ] [ PubMed ] [ Google Scholar ] 12. Michael CR. Visual receptive fields of single neurons in superior colliculus of the ground squirrel. J Neurophysiol. 1972;35:815–832. doi: 10.1152/jn.1972.35.6.815. [ DOI ] [ PubMed ] [ Google Scholar ] 13. Masland RH, Chow KL, Stewart DL. Receptive-field characteristics of superior colliculus neurons in the rabbit. J Neurophysiol. 1971;34:148–156. doi: 10.1152/jn.1971.34.1.148. [ DOI ] [ PubMed ] [ Google Scholar ] 14. Fortin S, et al. Maturation of visual receptive field properties in the rat superior colliculus. Brain Res Dev Brain Res. 1999;112:55–64. doi: 10.1016/s0165-3806(98)00157-6. [ DOI ] [ PubMed ] [ Google Scholar ] 15. Drager UC, Hubel DH. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol. 1975;38:690–713. doi: 10.1152/jn.1975.38.3.690. [ DOI ] [ PubMed ] [ Google Scholar ] 16. Cynader M, Berman N. Receptive-field organization of monkey superior colliculus. J Neurophysiol. 1972;35:187–201. doi: 10.1152/jn.1972.35.2.187. [ DOI ] [ PubMed ] [ Google Scholar ] 17. Marrocco RT, Li RH. Monkey superior colliculus: properties of single cells and their afferent inputs. J Neurophysiol. 1977;40:844–860. doi: 10.1152/jn.1977.40.4.844. [ DOI ] [ PubMed ] [ Google Scholar ] 18. Dhande OS, Huberman AD. Retinal ganglion cell maps in the brain: implications for visual processing. Curr Opin Neurobiol. 2014;24:133–142. doi: 10.1016/j.conb.2013.08.006. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 19. Huberman AD, et al. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron. 2008;59:425–438. doi: 10.1016/j.neuron.2008.07.018. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 20. Huberman AD, et al. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron. 2009;62:327–334. doi: 10.1016/j.neuron.2009.04.014. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 21. Kay JN, et al. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J Neurosci. 2011;31:7753–7762. doi: 10.1523/JNEUROSCI.0907-11.2011. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 22. Kim IJ, Zhang Y, Meister M, Sanes JR. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J Neurosci. 2010;30:1452–1462. doi: 10.1523/JNEUROSCI.4779-09.2010. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 23. Inayat S, et al. Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction. J Neurosci. 2015;35:7992–8003. doi: 10.1523/JNEUROSCI.0173-15.2015. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 24. Reichardt W. In: Sensory Communication. Rosenblith W, editor. Wiley; 1961. pp. 303–317. [ Google Scholar ] 25. Saul AB, Humphrey AL. Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis Neurosci. 1992;8:365–372. doi: 10.1017/s0952523800005101. [ DOI ] [ PubMed ] [ Google Scholar ] 26. Priebe NJ, Ferster D. Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron. 2005;45:133–145. doi: 10.1016/j.neuron.2004.12.024. [ DOI ] [ PubMed ] [ Google Scholar ] 27. Barlow HB, Levick WR. The mechanism of directionally selective units in rabbit’s retina. J Physiol. 1965;178:477–504. doi: 10.1113/jphysiol.1965.sp007638. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 28. Wang L, Sarnaik R, Rangarajan K, Liu X, Cang J. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J Neurosci. 2010;30:16573–16584. doi: 10.1523/JNEUROSCI.3305-10.2010. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 29. Li YT, Liu BH, Chou XL, Zhang LI, Tao HW. Strengthening of Direction Selectivity by Broadly Tuned and Spatiotemporally Slightly Offset Inhibition in Mouse Visual Cortex. Cereb Cortex. 2015;25:2466–2477. doi: 10.1093/cercor/bhu049. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 30. Lien AD, Scanziani M. Tuned thalamic excitation is amplified by visual cortical circuits. Nat Neurosci. 2013;16:1315–1323. doi: 10.1038/nn.3488. nn.3488 [pii] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 31. Li YT, Ibrahim LA, Liu BH, Zhang LI, Tao HW. Linear transformation of thalamocortical input by intracortical excitation. Nat Neurosci. 2013;16:1324–1330. doi: 10.1038/nn.3494. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 32. Pei Z, et al. Conditional Knock-Out of Vesicular GABA Transporter Gene from Starburst Amacrine Cells Reveals the Contributions of Multiple Synaptic Mechanisms Underlying Direction Selectivity in the Retina. J Neurosci. 2015;35:13219–13232. doi: 10.1523/JNEUROSCI.0933-15.2015. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 33. Chen TW, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300. doi: 10.1038/nature12354. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 34. Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci. 2015;38:221–246. doi: 10.1146/annurev-neuro-071714-034120. [ DOI ] [ PubMed ] [ Google Scholar ] 35. Baden T, et al. The functional diversity of retinal ganglion cells in the mouse. Nature. 2016;529:345–350. doi: 10.1038/nature16468. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 36. Chandrasekaran AR, Shah RD, Crair MC. Developmental homeostasis of mouse retinocollicular synapses. J Neurosci. 2007;27:1746–1755. doi: 10.1523/JNEUROSCI.4383-06.2007. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 37. Ko H, et al. Functional specificity of local synaptic connections in neocortical networks. Nature. 2011;473:87–91. doi: 10.1038/nature09880. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 38. Lee WC, et al. Anatomy and function of an excitatory network in the visual cortex. Nature. 2016;532:370–374. doi: 10.1038/nature17192. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 39. Cossell L, et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature. 2015;518:399–403. doi: 10.1038/nature14182. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 40. Ko H, et al. The emergence of functional microcircuits in visual cortex. Nature. 2013;496:96–100. doi: 10.1038/nature12015. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 41. Gabriel JP, Trivedi CA, Maurer CM, Ryu S, Bollmann JH. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum. Neuron. 2012;76:1147–1160. doi: 10.1016/j.neuron.2012.12.003. [ DOI ] [ PubMed ] [ Google Scholar ] 42. Lowe AS, Nikolaou N, Hunter PR, Thompson ID, Meyer MP. A systems-based dissection of retinal inputs to the zebrafish tectum reveals different rules for different functional classes during development. J Neurosci. 2013;33:13946–13956. doi: 10.1523/JNEUROSCI.1866-13.2013. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 43. Nikolaou N, Meyer MP. Imaging circuit formation in zebrafish. Dev Neurobiol. 2012;72:346–357. doi: 10.1002/dneu.20874. [ DOI ] [ PubMed ] [ Google Scholar ] 44. Robles E, Filosa A, Baier H. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J Neurosci. 2013;33:5027–5039. doi: 10.1523/JNEUROSCI.4990-12.2013. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 45. Ogasawara K, McHaffie JG, Stein BE. Two visual corticotectal systems in cat. J Neurophysiol. 1984;52:1226–1245. doi: 10.1152/jn.1984.52.6.1226. [ DOI ] [ PubMed ] [ Google Scholar ] 46. Hoffmann KP, Straschill M. Influences of cortico-tectal and intertectal connections on visual responses in the cat’s superior colliculus. Exp Brain Res. 1971;12:120–131. doi: 10.1007/BF00234310. [ DOI ] [ PubMed ] [ Google Scholar ] 47. Michael CR. Integration of retinal and cortical information in the superior colliculus of the ground squirrel. Brain Behav Evol. 1970;3:205–209. doi: 10.1159/000125472. [ DOI ] [ PubMed ] [ Google Scholar ] 48. Zhao X, Liu M, Cang J. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron. 2014;84:202–213. doi: 10.1016/j.neuron.2014.08.037. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 49. Gale SD, Murphy GJ. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J Neurosci. 2014;34:13458–13471. doi: 10.1523/JNEUROSCI.2768-14.2014. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 50. Zhao X, Liu M, Cang J. Sublinear binocular integration preserves orientation selectivity in mouse visual cortex. Nat Commun. 2013;4:2088. doi: 10.1038/ncomms3088. ncomms3088 [pii] [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 51. Tada M, Takeuchi A, Hashizume M, Kitamura K, Kano M. A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo. Eur J Neurosci. 2014;39:1720–1728. doi: 10.1111/ejn.12476. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 52. Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10:433–436. [ PubMed ] [ Google Scholar ] 53. Niell CM, Stryker MP. Highly selective receptive fields in mouse visual cortex. J Neurosci. 2008;28:7520–7536. doi: 10.1523/JNEUROSCI.0623-08.2008. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 54. Ferenczi EA, et al. Optogenetic approaches addressing extracellular modulation of neural excitability. Sci Rep. 2016;6:23947. doi: 10.1038/srep23947. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ] 55. Wei W, Elstrott J, Feller MB. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Protoc. 2010;5:1347–1352. doi: 10.1038/nprot.2010.106. [ DOI ] [ PMC free article ] [ PubMed ] [ Google Scholar ]

    Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    NIHMS843526-supplement-1.doc (4.5MB, doc) NIHMS843526-supplement-2.pdf (154.9KB, pdf)

    Data Availability Statement

    The data that support the findings of this study and the custom Matlab code are available from the corresponding author upon reasonable request.