添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

Milvus allows you to store and index structured data within a single field using the JSON data type. This enables flexible schemas with nested attributes while still allowing efficient filtering via JSON path indexing.

What is a JSON field?

A JSON field is a schema-defined field in Milvus that stores structured key-value data. The values can include strings, numbers, booleans, arrays, or deeply nested objects.

Here’s an example of what a JSON field might look like in a document:

"metadata" : { "category" : "electronics" , "brand" : "BrandA" , "in_stock" : true , "price" : 99.99 , "string_price" : "99.99" , "tags" : [ "clearance" , "summer_sale" ] , "supplier" : { "name" : "SupplierX" , "country" : "USA" , "contact" : { "email" : "[email protected]" , "phone" : "+1-800-555-0199"

In this example:

  • metadata is the JSON field defined in the schema.

  • You can store flat values (e.g. category , in_stock ), arrays ( tags ), and nested objects ( supplier ).

  • Define a JSON field in the schema

    To use a JSON field, explicitly define it in the collection schema by specifying the DataType as JSON .

    The example below creates a collection with its schema containing these fields:

  • The primary key ( product_id )

  • A vector field (mandatory for each collection)

  • A metadata field of type JSON , which can store structured data like flat values, arrays, or nested objects

  • Python NodeJS
    from pymilvus import MilvusClient, DataType
    client = MilvusClient(uri="http://localhost:19530")
    # Create schema with a JSON field
    schema = client.create_schema(auto_id=False, enable_dynamic_field=True)
    schema.add_field(field_name="product_id", datatype=DataType.INT64, is_primary=True)
    schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=5)
    schema.add_field(field_name="metadata", datatype=DataType.JSON, nullable=True)  # JSON field that allows null values
    client.create_collection(
        collection_name="product_catalog",
        schema=schema
    
    import io.milvus.v2.client.*;
    import io.milvus.v2.service.collection.request.CreateCollectionReq;
    import io.milvus.v2.service.collection.request.AddFieldReq;
    ConnectConfig config = ConnectConfig.builder()
            .uri("http://localhost:19530")
            .build();
    MilvusClientV2 client = new MilvusClientV2(config);
    CreateCollectionReq.CollectionSchema schema = CreateCollectionReq.CollectionSchema.builder()
            .enableDynamicField(true)
            .build();
    schema.addField(AddFieldReq.builder()
            .fieldName("product_id")
            .dataType(DataType.Int64)
            .isPrimaryKey(Boolean.TRUE)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("vector")
            .dataType(DataType.FloatVector)
            .dimension(5)
            .build());
    schema.addField(AddFieldReq.builder()
            .fieldName("metadata")
            .dataType(DataType.JSON)
            .isNullable(true)
            .build());
    CreateCollectionReq requestCreate = CreateCollectionReq.builder()
            .collectionName("product_catalog")
            .collectionSchema(schema)
            .build();
    client.createCollection(requestCreate);
    
    import { MilvusClient, DataType } from '@zilliz/milvus2-sdk-node';
    const client = new MilvusClient({
      address: 'localhost:19530'
    // Create collection
    await client.createCollection({
    collection_name: "product_catalog",
    fields: [
        name: "product_id",
        data_type: DataType.Int64,
        is_primary_key: true,
        autoID: false
        name: "vector",
        data_type: DataType.FloatVector,
        dim: 5
        name: "metadata",
        data_type: DataType.JSON,
        nullable: true  // JSON field that allows null values
    enable_dynamic_field: true
    
    import (
        "context"
        "github.com/milvus-io/milvus/client/v2/entity"
        "github.com/milvus-io/milvus/client/v2/milvusclient"
    ctx, cancel := context.WithCancel(context.Background())
    defer cancel()
    client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
        Address: "localhost:19530",
    if err != nil {
        return err
    schema := entity.NewSchema().WithDynamicFieldEnabled(true)
    schema.WithField(entity.NewField().
        WithName("product_id").pk
        WithDataType(entity.FieldTypeInt64).
        WithIsPrimaryKey(true),
    ).WithField(entity.NewField().
        WithName("vector").
        WithDataType(entity.FieldTypeFloatVector).
        WithDim(5),
    ).WithField(entity.NewField().
        WithName("metadata").
        WithDataType(entity.FieldTypeJSON).
        WithNullable(true),
    err = client.CreateCollection(ctx, milvusclient.NewCreateCollectionOption("product_catalog", schema))
    if err != nil {
        return err
    
    # restful
    export TOKEN="root:Milvus"
    export CLUSTER_ENDPOINT="http://localhost:19530"
    # 字段定义
    export productIdField='{
      "fieldName": "product_id",
      "dataType": "Int64",
      "isPrimary": true,
      "autoID": false
    export vectorField='{
      "fieldName": "vector",
      "dataType": "FloatVector",
      "typeParams": {
        "dim": 5
    export metadataField='{
      "fieldName": "metadata",
      "dataType": "JSON",
      "isNullable": true
    # 构造 schema
    export schema="{
      \"autoID\": false,
      \"enableDynamicField\": true,
      \"fields\": [
        $productIdField,
        $vectorField,
        $metadataField
    # 创建集合
    curl --request POST \
    --url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
    --header "Authorization: Bearer ${TOKEN}" \
    --header "Content-Type: application/json" \
    --data "{
      \"collectionName\": \"product_catalog\",
      \"schema\": $schema
    

    You can also enable the dynamic field feature to store undeclared fields flexibly, but it’s not required for JSON fields to function. For more information, refer to Dynamic Field.

    Insert entities with JSON data

    Once the collection is created, insert entities that contain structured JSON objects in the metadata JSON field.

    Python NodeJS
    entities = [
            "product_id": 1,
            "vector": [0.1, 0.2, 0.3, 0.4, 0.5],
            "metadata": {
                "category": "electronics",
                "brand": "BrandA",
                "in_stock": True,
                "price": 99.99,
                "string_price": "99.99",
                "tags": ["clearance", "summer_sale"],
                "supplier": {
                    "name": "SupplierX",
                    "country": "USA",
                    "contact": {
                        "email": "[email protected]",
                        "phone": "+1-800-555-0199"
    client.insert(collection_name="product_catalog", data=entities)
    
    import com.google.gson.Gson;
    import com.google.gson.JsonObject;
    import io.milvus.v2.service.vector.request.InsertReq;
    Gson gson = new Gson();
    JsonObject row = new JsonObject();
    row.addProperty("product_id", 1);
    row.add("vector", gson.toJsonTree(Arrays.asList(0.1, 0.2, 0.3, 0.4, 0.5)));
    JsonObject metadata = new JsonObject();
    metadata.addProperty("category", "electronics");
    metadata.addProperty("brand", "BrandA");
    metadata.addProperty("in_stock", true);
    metadata.addProperty("price", 99.99);
    metadata.addProperty("string_price", "99.99");
    metadata.add("tags", gson.toJsonTree(Arrays.asList("clearance", "summer_sale")));
    JsonObject supplier = new JsonObject();
    supplier.addProperty("name", "SupplierX");
    supplier.addProperty("country", "USA");
    JsonObject contact = new JsonObject();
    contact.addProperty("email", "[email protected]");
    contact.addProperty("phone", "+1-800-555-0199");
    supplier.add("contact", contact);
    metadata.add("supplier", supplier);
    row.add("metadata"
    
    
    
    
        
    , metadata);
    client.insert(InsertReq.builder()
            .collectionName("product_catalog")
            .data(Collections.singletonList(row))
            .build());
    
    const entities = [
            "product_id": 1,
            "vector": [0.1, 0.2, 0.3, 0.4, 0.5],
            "metadata": {
                "category": "electronics",
                "brand": "BrandA",
                "in_stock": True,
                "price": 99.99,
                "string_price": "99.99",
                "tags": ["clearance", "summer_sale"],
                "supplier": {
                    "name": "SupplierX",
                    "country": "USA",
                    "contact": {
                        "email": "[email protected]",
                        "phone": "+1-800-555-0199"
    await client.insert({
        collection_name: "product_catalog", 
        data: entities
    
    _, err = client.Insert(ctx, milvusclient.NewColumnBasedInsertOption("product_catalog").
        WithInt64Column("product_id", []int64{1}).
        WithFloatVectorColumn("vector", 5, [][]float32{
            {0.1, 0.2, 0.3, 0.4, 0.5},
        }).WithColumns(
        column.NewColumnJSONBytes("metadata", [][]byte{
            []byte(`{
                "category": "electronics",
                "brand": "BrandA",
                "in_stock": True,
                "price": 99.99,
                "string_price": "99.99",
                "tags": ["clearance", "summer_sale"],
                "supplier": {
                    "name": "SupplierX",
                    "country": "USA",
                    "contact": {
                        "email": "[email protected]",
                        "phone": "+1-800-555-0199"
            }`),
    if err != nil {
        return err
    
    # restful
    export TOKEN="root:Milvus"
    export CLUSTER_ENDPOINT="http://localhost:19530"
    export entities='[
        "product_id": 1,
        "vector": [0.1, 0.2, 0.3, 0.4, 0.5],
        "metadata": {
          "category": "electronics",
          "brand": "BrandA",
          "in_stock": true,
          "price": 99.99,
          "string_price": "99.99",
          "tags": ["clearance", "summer_sale"],
          "supplier": {
            "name": "SupplierX",
            "country": "USA",
            "contact": {
              "email": "[email protected]",
              "phone": "+1-800-555-0199"
    curl --request POST \
    --url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/product_catalog/insert" \
    --header "Authorization: Bearer ${TOKEN}" \
    --header "Content-Type: application/json" \
    --data "{
      \"data\": $entities
    

    Index values inside the JSON fieldCompatible with Milvus 2.5.11+

    To accelerate scalar filtering on JSON fields, Milvus supports indexing JSON fields using JSON path indexing. This allows you to filter by keys or nested values inside a JSON object without scanning the entire field.

    Indexing JSON fields is optional. You can still query or filter by JSON paths without an index, but it may result in slower performance due to brute-force search.

    JSON path indexing syntax

    To create a JSON path index, specify:

  • JSON path (json_path): The path to the key or nested field within your JSON object that you want to index.

  • Example: metadata["category"]

    This defines where the indexing engine should look inside the JSON structure.

  • JSON cast type (json_cast_type): The data type that Milvus should use when interpreting and indexing the value at the specified path.

  • This type must match the actual data type of the field being indexed. If you want to convert the data type to another during indexing, consider using a cast function.

  • For a complete list, see below.

  • Supported JSON cast types

    Cast types are case-insensitive. The following types are supported:

    Cast Type

    Description

    Example JSON Value

    Boolean value

    true, false

    double

    Numeric value (integer or float)

    42, 99.99, -15.5

    varchar

    String value

    "electronics", "BrandA"

    array_bool

    Array of booleans

    [true, false, true]

    array_double

    Array of numbers

    [1.2, 3.14, 42]

    array_varchar

    Array of strings

    ["tag1", "tag2", "tag3"]

    Arrays should contain elements of the same type for optimal indexing. For more information, refer to Array Field.

    Example: Create JSON path indexes

    Using the metadata JSON structure from our introduction, here are examples of how to create indexes on different JSON paths:

    Python NodeJS
    # Index the category field as a string
    index_params = client.prepare_index_params()
    index_params.add_index(
        field_name="metadata",
        index_type="AUTOINDEX", # Must be set to AUTOINDEX or INVERTED for JSON path indexing
        index_name="category_index",  # Unique index name
        params={
            "json_path": "metadata[\"category\"]", # Path to the JSON key to be indexed
            "json_cast_type": "varchar" # Data cast type
    # Index the tags array as string array
    index_params.add_index(
        field_name="metadata",
        index_type="AUTOINDEX", # Must be set to AUTOINDEX or INVERTED for JSON path indexing
        index_name="tags_array_index", # Unique index name
        params={
            "json_path": "metadata[\"tags\"]", # Path to the JSON key to be indexed
            "json_cast_type": "array_varchar" # Data cast type
    
    import io.milvus.v2.common.IndexParam;
    Map<String,Object> extraParams1 = new HashMap<>();
    extraParams1.put("json_path", "metadata[\"category\"]");
    extraParams1.put("json_cast_type", "varchar");
    indexParams.add(IndexParam.builder()
            .fieldName("metadata")
            .indexName("category_index")
            .indexType(IndexParam.IndexType.AUTOINDEX)
            .extraParams(extraParams1)
            .build());
    Map<String,Object> extraParams2 = new HashMap<>();
    extraParams2.put("json_path", "metadata[\"tags\"]");
    extraParams2.put("json_cast_type", "array_varchar");
    indexParams.add(IndexParam.builder()
            .fieldName("metadata")
            .indexName("tags_array_index")
            .indexType(IndexParam.IndexType.AUTOINDEX)
            .extraParams(extraParams2)
            .build());
    
    const indexParams = [
        collection_name: "product_catalog",
        field_name: "metadata",
        index_name: "category_index",
        index_type: "AUTOINDEX", // Can also use "INVERTED" for JSON path indexing
        extra_params: {
          json_path: 'metadata["category"]',
          json_cast_type: "varchar",
        collection_name: "product_catalog",
        field_name: "metadata",
        index_name: "tags_array_index",
        index_type: "AUTOINDEX", // Can also use "INVERTED" for JSON path indexing
        extra_params: {
          json_path: 'metadata["tags"]',
          json_cast_type: "array_varchar",
    
    import (
        "github.com/milvus-io/milvus/client/v2/index"
    jsonIndex1 := index.NewJSONPathIndex(index.AUTOINDEX, "varchar", `metadata["category"]`)
        .WithIndexName("category_index")
    jsonIndex2 := index.NewJSONPathIndex(index.AUTOINDEX, "array_varchar", `metadata["tags"]`)
        .WithIndexName("tags_array_index")
    indexOpt1 := milvusclient.NewCreateIndexOption("product_catalog", "metadata", jsonIndex1)
    indexOpt2 := milvusclient.NewCreateIndexOption("product_catalog", "metadata", jsonIndex2)
    
    # restful
    export categoryIndex='{
      "fieldName": "metadata",
      "indexName": "category_index",
      "params": {
        "index_type": "AUTOINDEX",
        "json_path": "metadata[\\\"category\\\"]",
        "json_cast_type": "varchar"
    export tagsArrayIndex='{
      "fieldName": "metadata",
      "indexName": "tags_array_index",
      "params": {
        "index_type": "AUTOINDEX",
        "json_path": "metadata[\\\"tags\\\"]",
        "json_cast_type": "array_varchar"
    

    Use JSON cast functions for type conversionCompatible with Milvus 2.5.14+

    If your JSON field key contains values in an incorrect format (e.g., numbers stored as strings), you can use cast functions to convert values during indexing.

    Supported cast functions

    Cast functions are case-insensitive. The following types are supported:

    Cast Function

    Converts From → To

    Use Case

    "STRING_TO_DOUBLE"

    String → Numeric (double)

    Convert "99.99" to 99.99

    Example: Cast string numbers to double

    Python NodeJS
    # Convert string numbers to double for indexing
    index_params.add_index(
        field_name="metadata",
        index_type="AUTOINDEX", # Must be set to AUTOINDEX or INVERTED for JSON path indexing
        index_name="string_to_double_index", # Unique index name
        params={
            "json_path": "metadata[\"string_price\"]", # Path to the JSON key to be indexed
            "json_cast_type": "double", # Data cast type
            "json_cast_function": "STRING_TO_DOUBLE" # Cast function; case insensitive
    
    Map<String,Object> extraParams3 = new HashMap<>();
    extraParams3.put("json_path", "metadata[\"string_price\"]");
    extraParams3.put("json_cast_type", "double");
    extraParams3.put("json_cast_function", "STRING_TO_DOUBLE");
    indexParams.add(IndexParam.builder()
            .fieldName("metadata")
            .indexName("string_to_double_index")
            .indexType(IndexParam.IndexType.AUTOINDEX)
            .extraParams(extraParams3)
            .build());
    
    indexParams.push({
      collection_name: "product_catalog",
      field_name: "metadata",
      index_name: "string_to_double_index",
      index_type: "AUTOINDEX", // Can also use "INVERTED"
      extra_params: {
        json_path: 'metadata["string_price"]',
        json_cast_type: "double",
        json_cast_function: "STRING_TO_DOUBLE", // Case insensitive
    
    jsonIndex3 := index.NewJSONPathIndex(index.AUTOINDEX, "double", `metadata["string_price"]`)
                        .WithIndexName("string_to_double_index")
    indexOpt3 := milvusclient.NewCreateIndexOption("product_catalog", "metadata", jsonIndex3)
    
    # restful
    export stringToDoubleIndex='{
      "fieldName": "metadata",
      "indexName": "string_to_double_index",
      "params": {
        "index_type": "AUTOINDEX",
        "json_path": "metadata[\\\"string_price\\\"]",
        "json_cast_type": "double",
        "json_cast_function": "STRING_TO_DOUBLE"
    
  • The json_cast_type parameter is mandatory and must be the same as the cast function’s output type.

  • If conversion fails (e.g., non-numeric string), the value is skipped and not indexed.

  • Apply indexes to the collection

    After defining the index parameters, you can apply them to the collection using create_index():

    Python NodeJS
    client.create_index(
        collection_name="product_catalog",
        index_params=index_params
    
    import io.milvus.v2.service.index.request.CreateIndexReq;
    client.createIndex(CreateIndexReq.builder()
            .collectionName("product_catalog")
            .indexParams(indexParams)
            .build());
    
    await client.createIndex(indexParams)
    
    indexTask1, err := client.CreateIndex(ctx, indexOpt1)
    if err != nil {
        return err
    indexTask2, err := client.CreateIndex(ctx, indexOpt2)
    if err != nil {
        return err
    indexTask3, err := client.CreateIndex(ctx, indexOpt3)
    if err != nil {
        return err
    
    # restful
    export indexParams="[
      $categoryIndex,
      $tagsArrayIndex,
      $stringToDoubleIndex
    curl --request POST \
    --url "${CLUSTER_ENDPOINT}/v2/vectordb/indexes/create" \
    --header "Authorization: Bearer ${TOKEN}" \
    --header "Content-Type: application/json" \
    --data "{
      \"collectionName\": \"product_catalog\",
      \"indexParams\": $indexParams
    

    Filter by JSON field values

    After inserting and indexing JSON fields, you can filter on them using standard filter expressions with JSON path syntax.

    For example:

    Python NodeJS
    filter = 'metadata["category"] == "electronics"'
    filter = 'metadata["price"] > 50'
    filter = 'json_contains(metadata["tags"], "featured")'
    
    String filter = 'metadata["category"] == "electronics"';
    String filter = 'metadata["price"] > 50';
    String filter = 'json_contains(metadata["tags"], "featured")';
    
    let filter = 'metadata["category"] == "electronics"'
    let filter = 'metadata["price"] > 50'
    let filter = 'json_contains(metadata["tags"], "featured")'
    
    filter := 'metadata["category"] == "electronics"'
    filter := 'metadata["price"] > 50'
    filter := 'json_contains(metadata["tags"], "featured")'
    
    # restful
    export filterCategory='metadata["category"] == "electronics"'
    export filterPrice='metadata["price"] > 50'
    export filterTags='json_contains(metadata["tags"], "featured")'
    

    To use these expressions in a search or query, make sure:

  • You have created an index on each vector field.

  • The collection is loaded into memory.

  • For a full list of supported operators and expressions, refer to JSON Operators.

    Pull it all together

    By now, you’ve learned how to define, insert, and optionally index structured values inside a JSON field.

    To complete the workflow in a real-world application, you’ll also need to:

  • Create an index on your vector fields (mandatory for each vector field in a collection)

    Refer to Set Index Parameters

  • Load the collection

    Refer to Load & Release

  • Search or query using JSON path filters

    Refer to Filtered Search and JSON Operators

  • What are the differences between a JSON field and the dynamic field?

    • JSON field is schema-defined. You must explicitly declare the field in the schema.

    • Dynamic field is a hidden JSON object ($meta) that automatically stores any field not defined in the schema.

    • Both support nested structures and JSON path indexing, but dynamic fields are more suitable for optional or evolving data structures.

      Refer to Dynamic Field for details.

      Are there any limitations on the size of a JSON field?

      Yes. Each JSON field is limited to 65,536 bytes.

      Does a JSON field support setting a default value?

      No, JSON fields do not support default values. However, you can set nullable=True when defining the field to allow empty entries.

      Refer to Nullable & Default for details.

      Are there any naming conventions for JSON field keys?

      Yes, to ensure compatibility with queries and indexing:

    • Use only letters, numbers, and underscores in JSON keys.

    • Avoid using special characters, spaces, or dots (., /, etc.).

    • Incompatible keys may cause parsing issues in filter expressions.

    • How does Milvus handle string values in JSON fields?

      Milvus stores string values exactly as they appear in the JSON input—without semantic transformation. Improperly quoted strings may result in errors during parsing.

      Examples of valid strings:

      "a\"b", "a'b", "a\\b"
      

      Examples of invalid strings:

      'a"b', 'a\'b'
      

      What filtering logic does Milvus use for indexed JSON paths?

      • Numeric Indexing:

        If an index is created with json_cast_type="double", only numeric filter conditions (e.g., >, <, == 42) will leverage the index. Non-numeric conditions may fall back to a brute-force scan.

      • String Indexing:

        If an index uses json_cast_type="varchar", only string filter conditions will benefit from the index; other types may fall back to a brute-force scan.

      • Boolean Indexing:

        Boolean indexing behaves similarly to string indexing, with index usage only when the condition strictly matches true or false.