添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
Classes struct BranchStruct This record represents a branch point when finding neighbors in the tree. More...
struct Interval struct Node Public Types typedef Distance::ElementType ElementType typedef Distance::DistanceType DistanceType Public Member Functions KDTreeSingleIndexAdaptor (const int dimensionality, const DatasetAdaptor &inputData, const KDTreeSingleIndexAdaptorParams &params= KDTreeSingleIndexAdaptorParams ())  KDTree constructor.
void init () ~KDTreeSingleIndexAdaptor ()  Standard destructor.
void freeIndex ()  Frees the previously-built index.
void buildIndex ()  Builds the index.
size_t size () const  Returns size of index.
size_t veclen () const  Returns the length of an index feature.
size_t usedMemory () const  Computes the inde memory usage Returns: memory used by the index.
void saveIndex (FILE *stream)  Stores the index in a binary file.
void loadIndex (FILE *stream)  Loads a previous index from a binary file.
Query methods
template<typename RESULTSET > void findNeighbors (RESULTSET &result, const ElementType *vec, const SearchParams &searchParams) const  Find set of nearest neighbors to vec[0:dim-1].
void knnSearch (const ElementType *query_point, const size_t num_closest, IndexType *out_indices, DistanceType *out_distances_sq, const int=10) const  Find the "num_closest" nearest neighbors to the query_point [0:dim-1].
size_t radiusSearch (const ElementType *query_point, const DistanceType radius, std::vector< std::pair< IndexType, DistanceType > > &IndicesDists, const SearchParams &searchParams) const  Find all the neighbors to query_point [0:dim-1] within a maximum radius.
size_t radiusSearch (const ElementType *query_point, const DistanceType radius, std::list< IndexType > &IndicesDists, const SearchParams &searchParams) const Public Attributes Distance distance Protected Types typedef Node * NodePtr typedef array_or_vector_selector < DIM, Interval >::container_t BoundingBox Define "BoundingBox" as a fixed-size or variable-size container depending on "DIM".
typedef array_or_vector_selector < DIM, DistanceType >::container_t distance_vector_t Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM".
typedef BranchStruct < NodePtr , DistanceType > BranchSt typedef BranchSt * Branch Protected Attributes std::vector< IndexType > vind Array of indices to vectors in the dataset.
size_t m_leaf_max_size const DatasetAdaptor & dataset The dataset used by this index.
const KDTreeSingleIndexAdaptorParams index_params size_t m_size int dim Dimensionality of each data point.
NodePtr root_node Array of k-d trees used to find neighbours.
BoundingBox root_bbox PooledAllocator pool Pooled memory allocator.

Detailed Description

template<typename Distance, class DatasetAdaptor, int DIM = -1, typename IndexType = size_t>
class nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >

kd-tree index

Contains the k-d trees and other information for indexing a set of points for nearest-neighbor matching.

The class "DatasetAdaptor" must provide the following interface (can be non-virtual, inlined methods):

// Must return the number of data points
inline size_t kdtree_get_point_count() const { ... }
// [Only if using the metric_L2_Simple type] Must return the Euclidean (L2) distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class:
inline DistanceType kdtree_distance( const T *p1, const size_t idx_p2, size_t size ) const { ... }
// Must return the dim'th component of the idx'th point in the class:
inline T kdtree_get_pt( const size_t idx, int dim ) const { ... }
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template < class BBOX>
bool kdtree_get_bbox(BBOX &bb) const
bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
return true ;
size_t size() const
Returns size of index.
int dim
Dimensionality of each data point.
Template Parameters
DatasetAdaptorThe user-provided adaptor (see comments above). DistanceThe distance metric to use: nanoflann::metric_L1 , nanoflann::metric_L2 , nanoflann::metric_L2_Simple , etc. IndexTypeWill be typically size_t or int

Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM".

Definition at line 931 of file nanoflann.hpp .

template<typename Distance , class DatasetAdaptor , int DIM = -1, typename IndexType = size_t>
typedef Distance::DistanceType nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::DistanceType template<typename Distance , class DatasetAdaptor , int DIM = -1, typename IndexType = size_t> typedef Distance::ElementType nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::ElementType nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::KDTreeSingleIndexAdaptor const int dimensionality ,

KDTree constructor.

Params: inputData = dataset with the input features params = parameters passed to the kdtree algorithm (see http://code.google.com/p/nanoflann/ for help choosing the parameters)

Definition at line 983 of file nanoflann.hpp .

988 dataset (inputData),
989 index_params (params),
990 m_size (0),
991 dim (dimensionality),
992 root_node (NULL),
993 distance (inputData) {
994 m_size = 0;
995 if (DIM > 0)
996 dim = DIM;
997 else {
998 if (params.dim > 0)
999 dim = params.dim;
1000 }
1001 m_leaf_max_size = params.leaf_max_size;
1002 }
const KDTreeSingleIndexAdaptorParams index_params
NodePtr root_node
Array of k-d trees used to find neighbours.
const DatasetAdaptor & dataset
The dataset used by this index.
nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::~ KDTreeSingleIndexAdaptor void nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::buildIndex
1030 return ;
1031 computeBoundingBox( root_bbox );
1032 root_node = divideTree(0, m_size , root_bbox ); // construct the tree
1033 }
void freeIndex()
Frees the previously-built index.
+ Here is the caller graph for this function:
template<typename Distance , class DatasetAdaptor , int DIM = -1, typename IndexType = size_t> template<typename RESULTSET > void nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::findNeighbors RESULTSET & result ,

Find set of nearest neighbors to vec[0:dim-1].

Their indices are stored inside the result object.

Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors

Template Parameters
RESULTSETShould be any ResultSet<DistanceType>
See also
knnSearch , radiusSearch

Definition at line 1073 of file nanoflann.hpp .

1074 {
1075 assert(vec);
1076 if (! root_node )
1077 throw std::runtime_error(
1078 "[nanoflann] findNeighbors() called before building the index or no data points." );
1079 float epsError = 1 + searchParams.eps;
1081 distance_vector_t dists; // fixed or variable-sized container (depending on DIM)
1082 dists.assign((DIM > 0 ? DIM : dim ), 0); // Fill it with zeros.
1083 DistanceType distsq = computeInitialDistances(vec, dists);
1084 searchLevel(result, vec, root_node , distsq, dists, epsError); // "count_leaf" parameter removed since was neither used nor returned to the user.
1085 }
array_or_vector_selector< DIM, DistanceType >::container_t distance_vector_t
Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM".

References nanoflann::CArray< T, N >::assign() , and nanoflann::SearchParams::eps .

+ Here is the call graph for this function:
void nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::freeIndex

Automatically called within buildIndex() .

Definition at line 1018 of file nanoflann.hpp .

1018 {
1020 root_node = NULL;
1021 }
PooledAllocator pool
Pooled memory allocator.
void free_all()
Frees all allocated memory chunks.
void nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::init

Definition at line 1004 of file nanoflann.hpp .

1004 {
1005 m_size = dataset .kdtree_get_point_count();
1007 // Create a permutable array of indices to the input vectors.
1008 init_vind();
1009 }
+ Here is the caller graph for this function:
void nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::knnSearch const ElementType * query_point ,

Find the "num_closest" nearest neighbors to the query_point [0:dim-1].

Their indices are stored inside the result object.

See also
radiusSearch , findNeighbors
Note
nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface.

Definition at line 1093 of file nanoflann.hpp .

1096 {
1098 resultSet.init(out_indices, out_distances_sq);
1099 this-> findNeighbors (resultSet, query_point, nanoflann::SearchParams ());
1100 }
void findNeighbors(RESULTSET &result, const ElementType *vec, const SearchParams &searchParams) const
Find set of nearest neighbors to vec[0:dim-1].
nanoflann::KNNResultSet
Search options for KDTreeSingleIndexAdaptor::findNeighbors()

References nanoflann::KNNResultSet< DistanceType, IndexType, CountType >::init() .

+ Here is the call graph for this function:
void nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::loadIndex FILE * stream )

Loads a previous index from a binary file.

IMPORTANT NOTE: The set of data points is NOT stored in the file, so the index object must be constructed associated to the same source of data points used while building the index. See the example: examples/saveload_example.cpp

See also
loadIndex

Definition at line 1507 of file nanoflann.hpp .

1507 {
1508 load_value (stream, m_size );
1509 load_value (stream, dim );
1510 load_value (stream, root_bbox );
1512 load_value (stream, vind );
1513 load_tree(stream, root_node );
1514 }
std::vector< IndexType > vind
Array of indices to vectors in the dataset.
void load_value(FILE *stream, T &value, size_t count=1)

References nanoflann::load_value() .

+ Here is the call graph for this function:
size_t nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::radiusSearch const ElementType * query_point ,

Definition at line 1127 of file nanoflann.hpp .

1129 {
1130 RadiusResultList<DistanceType, IndexType> resultList(radius, IndicesDists);
1131 this-> findNeighbors (resultList, query_point, searchParams);
1133 if (searchParams.sorted)
1134 IndicesDists.sort();
1136 return resultList.size();
1137 }

References nanoflann::RadiusResultList< DistanceType, IndexType >::size() , and nanoflann::SearchParams::sorted .

+ Here is the call graph for this function:
size_t nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::radiusSearch const ElementType * query_point ,

Find all the neighbors to query_point [0:dim-1] within a maximum radius.

The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance. Previous contents of IndicesDists are cleared.

If searchParams.sorted==true, the output list is sorted by ascending distances.

For a better performance, it is advisable to do a .reserve() on the vector if you have any wild guess about the number of expected matches.

See also
knnSearch , findNeighbors
Returns
The number of points within the given radius (i.e. indices.size() or dists.size() )

Definition at line 1114 of file nanoflann.hpp .

1117 {
1118 RadiusResultSet<DistanceType, IndexType> resultSet(radius, IndicesDists);
1119 this-> findNeighbors (resultSet, query_point, searchParams);
1121 if (searchParams.sorted)
1122 std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter());
1124 return resultSet.size();
1125 }

References nanoflann::RadiusResultSet< DistanceType, IndexType >::size() , and nanoflann::SearchParams::sorted .

+ Here is the call graph for this function:
void nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::saveIndex FILE * stream )

Stores the index in a binary file.

IMPORTANT NOTE: The set of data points is NOT stored in the file, so when loading the index object it must be constructed associated to the same source of data points used while building it. See the example: examples/saveload_example.cpp

See also
loadIndex

Definition at line 1494 of file nanoflann.hpp .

1494 {
1495 save_value (stream, m_size );
1496 save_value (stream, dim );
1497 save_value (stream, root_bbox );
1499 save_value (stream, vind );
1500 save_tree(stream, root_node );
1501 }
void save_value(FILE *stream, const T &value, size_t count=1)

References nanoflann::save_value() .

+ Here is the call graph for this function:
size_t nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::size const size_t nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::usedMemory const

Computes the inde memory usage Returns: memory used by the index.

Definition at line 1053 of file nanoflann.hpp .

1053 {
1055 + dataset .kdtree_get_point_count() * sizeof (IndexType); // pool memory and vind array memory
1056 }
size_t nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::veclen const

Definition at line 1045 of file nanoflann.hpp .

1045 {
1046 return static_cast< size_t > (DIM > 0 ? DIM : dim );
1047 }

Member Data Documentation

dataset

template<typename Distance , class DatasetAdaptor , int DIM = -1, typename IndexType = size_t>
Distance nanoflann::KDTreeSingleIndexAdaptor < Distance, DatasetAdaptor, DIM, IndexType >::distance

Pooled memory allocator.

Using a pooled memory allocator is more efficient than allocating memory directly when there is a large number small of memory allocations.

Definition at line 970 of file nanoflann.hpp .