添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

A multi-bucket value source based aggregation where buckets are dynamically built - one per unique set of values. The multi terms aggregation is very similar to the terms aggregation , however in most cases it will be slower than the terms aggregation and will consume more memory. Therefore, if the same set of fields is constantly used, it would be more efficient to index a combined key for this fields as a separate field and use the terms aggregation on this field.

The multi_term aggregations are the most useful when you need to sort by a number of document or a metric aggregation on a composite key and get top N results. If sorting is not required and all values are expected to be retrieved using nested terms aggregation or composite aggregations will be a faster and more memory efficient solution.

Example:

response = client.search(
  index: 'products',
  body: {
    aggregations: {
      genres_and_products: {
        multi_terms: {
          terms: [
              field: 'genre'
              field: 'product'
puts response
GET /products/_search
  "aggs": {
    "genres_and_products": {
      "multi_terms": {
        "terms": [{
          "field": "genre" 
          "field": "product"

By default, the multi_terms aggregation will return the buckets for the top ten terms ordered by the doc_count. One can change this default behaviour by setting the size parameter.

Aggregation Parametersedit

The following parameters are supported. See terms aggregation for more detailed explanation of these parameters.

Optional. The higher the requested size is, the more accurate the results will be, but also, the more expensive it will be to compute the final results. The default shard_size is (size * 1.5 + 10). Optional. Specifies the order of the buckets. Defaults to the number of documents per bucket. The bucket terms value is used as a tiebreaker for buckets with the same document count. Optional. The minimal number of documents in a bucket on each shard for it to be returned. Defaults to min_doc_count. Optional. Specifies the strategy for data collection. The depth_first or breadth_first modes are supported. Defaults to breadth_first.

Missing valueedit

The missing parameter defines how documents that are missing a value should be treated. By default if any of the key components are missing the entire document will be ignored but it is also possible to treat them as if they had a value by using the missing parameter.

response = client.search(
  index: 'products',
  body: {
    aggregations: {
      genres_and_products: {
        multi_terms: {
          terms: [
              field: 'genre'
              field: 'product',
              missing: 'Product Z'
puts response
GET /products/_search
  "aggs": {
    "genres_and_products": {
      "multi_terms": {
        "terms": [
            "field": "genre"
            "field": "product",
            "missing": "Product Z"

Response:

"aggregations" : { "genres_and_products" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ "key" : [ "rock", "Product A" "key_as_string" : "rock|Product A", "doc_count" : 2 "key" : [ "electronic", "Product B" "key_as_string" : "electronic|Product B", "doc_count" : 1 "key" : [ "electronic", "Product Z" "key_as_string" : "electronic|Product Z", "doc_count" : 1 "key" : [ "jazz", "Product B" "key_as_string" : "jazz|Product B", "doc_count" : 1 "key" : [ "rock", "Product B" "key_as_string" : "rock|Product B", "doc_count" : 1

When aggregating on multiple indices the type of the aggregated field may not be the same in all indices. Some types are compatible with each other (integer and long or float and double) but when the types are a mix of decimal and non-decimal number the terms aggregation will promote the non-decimal numbers to decimal numbers. This can result in a loss of precision in the bucket values.

Sub aggregation and sorting examplesedit

As most bucket aggregations the multi_term supports sub aggregations and ordering the buckets by metrics sub-aggregation:

response = client.search(
  index: 'products',
  body: {
    aggregations: {
      genres_and_products: {
        multi_terms: {
          terms: [
              field: 'genre'
              field: 'product'
          order: {
            total_quantity: 'desc'
        aggregations: {
          total_quantity: {
            sum: {
              field: 'quantity'
puts response
GET /products/_search
  "aggs": {
    "genres_and_products": {
      "multi_terms": {
        "terms": [
            "field": "genre"
            "field": "product"
        "order": {
          "total_quantity": "desc"
      "aggs": {
        "total_quantity": {
          "sum": {
            "field": "quantity"