添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • What is MLflow?
  • Quickstart: Install MLflow, instrument code & view results in minutes
  • Quickstart: Compare runs, choose a model, and deploy it to a REST API
  • Tutorials and Examples
  • Concepts
  • MLflow Tracking
  • MLflow LLM Tracking
  • MLflow Projects
  • MLflow Models
  • MLflow Model Registry
  • MLflow Recipes
  • MLflow AI Gateway (Experimental)
  • MLflow Plugins
  • MLflow Authentication
  • Command-Line Interface
  • Search Runs
  • Search Experiments
  • Python API
    • mlflow
    • mlflow.artifacts
    • mlflow.catboost
    • mlflow.client
    • mlflow.data
    • mlflow.deployments
    • mlflow.diviner
    • mlflow.entities
    • mlflow.environment_variables
    • mlflow.fastai
    • mlflow.gateway
    • mlflow.gluon
    • mlflow.h2o
    • mlflow.johnsnowlabs
    • mlflow.langchain
    • mlflow.lightgbm
    • mlflow.llm
    • mlflow.mleap
    • mlflow.models
    • mlflow.onnx
    • mlflow.paddle
    • mlflow.pmdarima
    • mlflow.projects
    • mlflow.prophet
    • mlflow.pyfunc
    • mlflow.pyspark.ml
    • mlflow.pytorch
    • mlflow.recipes
    • mlflow.sagemaker
    • mlflow.sentence_transformers
    • mlflow.server
    • mlflow.shap
    • mlflow.sklearn
    • mlflow.spacy
    • mlflow.spark
    • mlflow.statsmodels
    • mlflow.tensorflow
    • mlflow.transformers
    • mlflow.types
    • mlflow.xgboost
    • mlflow.openai
    • Log Levels
    • R API
    • Java API
    • REST API
    • Official MLflow Docker Image
    • Community Model Flavors
    • mlflow

      The mlflow module provides a high-level “fluent” API for starting and managing MLflow runs. For example:

      import mlflow
      mlflow.start_run()
      mlflow.log_param("my", "param")
      mlflow.log_metric("score", 100)
      mlflow.end_run()
      

      You can also use the context manager syntax like this:

      with mlflow.start_run() as run:
          mlflow.log_param("my", "param")
          mlflow.log_metric("score", 100)
      

      which automatically terminates the run at the end of the with block.

      The fluent tracking API is not currently threadsafe. Any concurrent callers to the tracking API must implement mutual exclusion manually.

      For a lower level API, see the mlflow.client module.

      class mlflow.ActiveRun(run)[source]

      Wrapper around mlflow.entities.Run to enable using Python with syntax.

      exception mlflow.MlflowException(message, error_code=1, **kwargs)[source]

      Generic exception thrown to surface failure information about external-facing operations. The error message associated with this exception may be exposed to clients in HTTP responses for debugging purposes. If the error text is sensitive, raise a generic Exception object instead.

      get_http_status_code()[source] classmethod invalid_parameter_value(message, **kwargs)[source]

      Constructs an MlflowException object with the INVALID_PARAMETER_VALUE error code.

      Parameters
    • message – The message describing the error that occurred. This will be included in the exception’s serialized JSON representation.

    • kwargs – Additional key-value pairs to include in the serialized JSON representation of the MlflowException.

    • mlflow.active_run()Optional[ActiveRun][source]

      Get the currently active Run, or None if no such run exists.

      Note: You cannot access currently-active run attributes (parameters, metrics, etc.) through the run returned by mlflow.active_run. In order to access such attributes, use the mlflow.client.MlflowClient as follows:

      Example
      import mlflow
      mlflow.start_run()
      run = mlflow.active_run()
      print("Active run_id: {}".format(run.info.run_id))
      mlflow.end_run()
      mlflow.autolog(log_input_examples: bool = False, log_model_signatures: bool = True, log_models: bool = True, log_datasets: bool = True
      
      
      
      
          
      , disable: bool = False, exclusive: bool = False, disable_for_unsupported_versions: bool = False, silent: bool = False, extra_tags: Optional[Dict[str, str]] = None)None[source] 
      

      Enables (or disables) and configures autologging for all supported integrations.

      The parameters are passed to any autologging integrations that support them.

      See the tracking docs for a list of supported autologging integrations.

      Note that framework-specific configurations set at any point will take precedence over any configurations set by this function. For example:

      import mlflow
      mlflow.autolog(log_models=False, exclusive=True)
      import sklearn
      

      would enable autologging for sklearn with log_models=False and exclusive=True,

      import mlflow
      mlflow.autolog(log_models=False, exclusive=True)
      import sklearn
      mlflow.sklearn.autolog(log_models=True)
      

      would enable autologging for sklearn with log_models=True and exclusive=False, the latter resulting from the default value for exclusive in mlflow.sklearn.autolog; other framework autolog functions (e.g. mlflow.tensorflow.autolog) would use the configurations set by mlflow.autolog (in this instance, log_models=False, exclusive=True), until they are explicitly called by the user.

      Parameters
    • log_input_examples – If True, input examples from training datasets are collected and logged along with model artifacts during training. If False, input examples are not logged. Note: Input examples are MLflow model attributes and are only collected if log_models is also True.

    • log_model_signatures – If True, ModelSignatures describing model inputs and outputs are collected and logged along with model artifacts during training. If False, signatures are not logged. Note: Model signatures are MLflow model attributes and are only collected if log_models is also True.

    • log_models – If True, trained models are logged as MLflow model artifacts. If False, trained models are not logged. Input examples and model signatures, which are attributes of MLflow models, are also omitted when log_models is False.

    • log_datasets – If True, dataset information is logged to MLflow Tracking. If False, dataset information is not logged.

    • disable – If True, disables all supported autologging integrations. If False, enables all supported autologging integrations.

    • exclusive – If True, autologged content is not logged to user-created fluent runs. If False, autologged content is logged to the active fluent run, which may be user-created.

    • disable_for_unsupported_versions – If True, disable autologging for versions of all integration libraries that have not been tested against this version of the MLflow client or are incompatible.

    • silent – If True, suppress all event logs and warnings from MLflow during autologging setup and training execution. If False, show all events and warnings during autologging setup and training execution.

    • extra_tags – A dictionary of extra tags to set on each managed run created by autologging.

    • import mlflow.sklearn from mlflow import MlflowClient from sklearn.linear_model import LinearRegression def print_auto_logged_info(r): tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")} artifacts = [f.path for f in MlflowClient().list_artifacts(r.info.run_id, "model")] print("run_id: {}".format(r.info.run_id)) print("artifacts: {}".format(artifacts)) print("params: {}".format(r.data.params)) print("metrics: {}".format(r.data.metrics)) print("tags: {}".format(tags)) # prepare training data X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 # Auto log all the parameters, metrics, and artifacts mlflow.autolog() model = LinearRegression() with mlflow.start_run() as run: model.fit(X, y) # fetch the auto logged parameters and metrics for ended run print_auto_logged_info(mlflow.get_run(run_id=run.info.run_id))
      Output
      run_id: fd10a17d028c47399a55ab8741721ef7
      artifacts: ['model/MLmodel', 'model/conda.yaml', 'model/model.pkl']
      params: {'copy_X': 'True',
               'normalize': 'False',
               'fit_intercept': 'True',
               'n_jobs': 'None'}
      metrics: {'training_score': 1.0,
                'training_root_mean_squared_error': 4.440892098500626e-16,
                'training_r2_score': 1.0,
                'training_mean_absolute_error': 2.220446049250313e-16,
                'training_mean_squared_error': 1.9721522630525295e-31}
      tags: {'estimator_class': 'sklearn.linear_model._base.LinearRegression',
             'estimator_name': 'LinearRegression'}
      mlflow.create_experiment(name: str, artifact_location: Optional[str] = None, tags: Optional[Dict[str, Any]] = None)str[source] 
      

      Create an experiment.

      Parameters
    • name – The experiment name, which must be unique and is case sensitive

    • artifact_location – The location to store run artifacts. If not provided, the server picks an appropriate default.

    • tags – An optional dictionary of string keys and values to set as tags on the experiment.

    • Returns

      String ID of the created experiment.

      Example
      import mlflow
      from pathlib import Path
      # Create an experiment name, which must be unique and case sensitive
      experiment_id = mlflow.create_experiment(
          "Social NLP Experiments",
          artifact_location=Path.cwd().joinpath("mlruns").as_uri(),
          tags={"version": "v1", "priority": "P1"
      
      
      
      
          
      },
      experiment = mlflow.get_experiment(experiment_id)
      print("Name: {}".format(experiment.name))
      print("Experiment_id: {}".format(experiment.experiment_id))
      print("Artifact Location: {}".format(experiment.artifact_location))
      print("Tags: {}".format(experiment.tags))
      print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
      print("Creation timestamp: {}".format(experiment.creation_time))
      Experiment_id: 1
      Artifact Location: file:///.../mlruns
      Tags: {'version': 'v1', 'priority': 'P1'}
      Lifecycle_stage: active
      Creation timestamp: 1662004217511
      mlflow.delete_experiment(experiment_id: str)None[source] 
      

      Delete an experiment from the backend store.

      Parameters

      experiment_id – The The string-ified experiment ID returned from create_experiment.

      Example
      import mlflow
      experiment_id = mlflow.create_experiment("New Experiment")
      mlflow.delete_experiment(experiment_id)
      # Examine the deleted experiment details.
      experiment = mlflow.get_experiment(experiment_id)
      print("Name: {}".format(experiment.name))
      print("Artifact Location: {}".format(experiment.artifact_location))
      print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
      print("Last Updated timestamp: {}".format(experiment.last_update_time))
      print(
          "run_id: {}; lifecycle_stage: {}".format(
              run_id, mlflow.get_run(run_id).info.lifecycle_stage
      mlflow.delete_tag(key: str)None[source] 
      

      Delete a tag from a run. This is irreversible. If no run is active, this method will create a new active run.

      Parameters

      key – Name of the tag

      Example
      import mlflow
      tags = {"engineering": "ML Platform", "engineering_remote": "ML Platform"}
      with mlflow.start_run() as run:
          mlflow.set_tags(tags)
      with mlflow.start_run(run_id=run.info.run_id):
          mlflow.delete_tag("engineering_remote")
      mlflow.doctor(mask_envs=False)[source] 
      

      Prints out useful information for debugging issues with MLflow.

      Parameters

      mask_envs – If True, mask the MLflow environment variable values (e.g. “MLFLOW_ENV_VAR”: “***”) in the output to prevent leaking sensitive information.

      Warning

    • This API should only be used for debugging purposes.

    • The output may contain sensitive information such as a database URI containing a password.

    • Example
      import mlflow
      with mlflow.start_run():
          mlflow.doctor()
      
      Output
      System information: Linux #58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022
      Python version: 3.8.13
      MLflow version: 2.0.1
      MLflow module location: /usr/local/lib/python3.8/site-packages/mlflow/__init__.py
      Tracking URI: sqlite:///mlflow.db
      Registry URI: sqlite:///mlflow.db
      MLflow environment variables:
        MLFLOW_TRACKING_URI: sqlite:///mlflow.db
      MLflow dependencies:
        Flask: 2.2.2
        Jinja2: 3.0.3
        alembic: 1.8.1
        click: 8.1.3
        cloudpickle: 2.2.0
        databricks-cli: 0.17.4.dev0
        docker: 6.0.0
        entrypoints: 0.4
        gitpython: 3.1.29
        gunicorn: 20.1.0
        importlib-metadata: 5.0.0
        markdown: 3.4.1
        matplotlib: 3.6.1
        numpy: 1.23.4
        packaging: 21.3
        pandas: 1.5.1
        protobuf: 3.19.6
        pyarrow: 9.0.0
        pytz: 2022.6
        pyyaml: 6.0
        querystring-parser: 1.2.4
        requests: 2.28.1
        scikit-learn: 1.1.3
        scipy: 1.9.3
        shap: 0.41.0
        sqlalchemy: 1.4.42
        sqlparse: 0.4.3
      mlflow.end_run(status: str = 'FINISHED')None[source] 
      

      End an active MLflow run (if there is one).

      Example
      import mlflow
      # Start run and get status
      mlflow.start_run()
      run = mlflow.active_run()
      print("run_id: {}; status: {}".format(run.info.run_id, run.info.status))
      # End run and get status
      mlflow.end_run()
      run = mlflow.get_run(run.info.run_id)
      print("run_id: {}; status: {}".format(run.info.run_id, run.info.status))
      print("--")
      # Check for any active runs
      print("Active run: {}".format(mlflow.active_run()))
      
      Output
      run_id: b47ee4563368419880b44ad8535f6371; status: RUNNING
      run_id: b47ee4563368419880b44ad8535f6371; status: FINISHED
      Active run: None
      mlflow.evaluate(model: str, data, *, model_type: str, targets=None, dataset_path=None, feature_names: Optional[list] = None, evaluators=None, evaluator_config=None, custom_metrics=None, custom_artifacts=None, validation_thresholds=None, baseline_model=None, env_manager='local')[source] 
      

      Evaluate a PyFunc model on the specified dataset using one or more specified evaluators , and log resulting metrics & artifacts to MLflow Tracking. Set thresholds on the generated metrics to validate model quality. For additional overview information, see the Model Evaluation documentation.

      Default Evaluator behavior:
      • The default evaluator, which can be invoked with evaluators="default" or evaluators=None, supports the "regressor" and "classifier" model types. It generates a variety of model performance metrics, model performance plots, and model explanations.

      • For both the "regressor" and "classifier" model types, the default evaluator generates model summary plots and feature importance plots using SHAP.

      • For regressor models, the default evaluator additionally logs:
        • metrics: example_count, mean_absolute_error, mean_squared_error, root_mean_squared_error, sum_on_target, mean_on_target, r2_score, max_error, mean_absolute_percentage_error.

        • For binary classifiers, the default evaluator additionally logs:
          • metrics: true_negatives, false_positives, false_negatives, true_positives, recall, precision, f1_score, accuracy_score, example_count, log_loss, roc_auc, precision_recall_auc.

          • artifacts: lift curve plot, precision-recall plot, ROC plot.

          • For multiclass classifiers, the default evaluator additionally logs:
            • metrics: accuracy_score, example_count, f1_score_micro, f1_score_macro, log_loss

            • artifacts: A CSV file for “per_class_metrics” (per-class metrics includes true_negatives/false_positives/false_negatives/true_positives/recall/precision/roc_auc, precision_recall_auc), precision-recall merged curves plot, ROC merged curves plot.

            • For question-answering models, the default evaluator logs:
              • metrics: exact_match, mean_perplexity (requires evaluate, pytorch, transformers), toxicity_ratio (requires evaluate, pytorch, transformers), mean_ari_grade_level (requires textstat), mean_flesch_kincaid_grade_level (requires textstat).

              • artifacts: A JSON file containing the inputs, outputs, targets (if the targets argument is supplied), and per-row metrics of the model in tabular format.

              • For text-summarization models, the default evaluator logs:
                • metrics: ROUGE (requires evaluate, nltk, and rouge_score to be installed), mean_perplexity (requires evaluate, pytorch, transformers), toxicity_ratio (requires evaluate, pytorch, transformers), mean_ari_grade_level (requires textstat), mean_flesch_kincaid_grade_level (requires textstat).

                • artifacts: A JSON file containing the inputs, outputs, targets (if the targets argument is supplied), and per-row metrics of the model in the tabular format.

                • For text models, the default evaluator logs:
                  • metrics: mean_perplexity (requires evaluate, pytorch, transformers), toxicity_ratio (requires evaluate, pytorch, transformers), mean_ari_grade_level (requires textstat), mean_flesch_kincaid_grade_level (requires textstat).

                  • artifacts: A JSON file containing the inputs, outputs, targets (if the targets argument is supplied), and per-row metrics of the model in tabular format.

                  • For sklearn models, the default evaluator additionally logs the model’s evaluation criterion (e.g. mean accuracy for a classifier) computed by model.score method.

                  • The metrics/artifacts listed above are logged to the active MLflow run. If no active run exists, a new MLflow run is created for logging these metrics and artifacts. Note that no metrics/artifacts are logged for the baseline_model.

                  • Additionally, information about the specified dataset - hash, name (if specified), path (if specified), and the UUID of the model that evaluated it - is logged to the mlflow.datasets tag.

                  • The available evaluator_config options for the default evaluator include:
                    • log_model_explainability: A boolean value specifying whether or not to log model explainability insights, default value is True.

                    • explainability_algorithm: A string to specify the SHAP Explainer algorithm for model explainability. Supported algorithm includes: ‘exact’, ‘permutation’, ‘partition’, ‘kernel’. If not set, shap.Explainer is used with the “auto” algorithm, which chooses the best Explainer based on the model.

                    • explainability_nsamples: The number of sample rows to use for computing model explainability insights. Default value is 2000.

                    • explainability_kernel_link: The kernel link function used by shap kernal explainer. Available values are “identity” and “logit”. Default value is “identity”.

                    • max_classes_for_multiclass_roc_pr: For multiclass classification tasks, the maximum number of classes for which to log the per-class ROC curve and Precision-Recall curve. If the number of classes is larger than the configured maximum, these curves are not logged.

                    • metric_prefix: An optional prefix to prepend to the name of each metric and artifact produced during evaluation.

                    • log_metrics_with_dataset_info: A boolean value specifying whether or not to include information about the evaluation dataset in the name of each metric logged to MLflow Tracking during evaluation, default value is True.

                    • pos_label: If specified, the positive label to use when computing classification metrics such as precision, recall, f1, etc. for binary classification models. For multiclass classification and regression models, this parameter will be ignored.

                    • average: The averaging method to use when computing classification metrics such as precision, recall, f1, etc. for multiclass classification models (default: 'weighted'). For binary classification and regression models, this parameter will be ignored.

                    • sample_weights: Weights for each sample to apply when computing model performance metrics.

                    • Limitations of evaluation dataset:
                      • For classification tasks, dataset labels are used to infer the total number of classes.

                      • For binary classification tasks, the negative label value must be 0 or -1 or False, and the positive label value must be 1 or True.

                      • Limitations of metrics/artifacts computation:
                        • For classification tasks, some metric and artifact computations require the model to output class probabilities. Currently, for scikit-learn models, the default evaluator calls the predict_proba method on the underlying model to obtain probabilities. For other model types, the default evaluator does not compute metrics/artifacts that require probability outputs.

                        • Limitations of default evaluator logging model explainability insights:
                          • The shap.Explainer auto algorithm uses the Linear explainer for linear models and the Tree explainer for tree models. Because SHAP’s Linear and Tree explainers do not support multi-class classification, the default evaluator falls back to using the Exact or Permutation explainers for multi-class classification tasks.

                          • Logging model explainability insights is not currently supported for PySpark models.

                          • The evaluation dataset label values must be numeric or boolean, all feature values must be numeric, and each feature column must only contain scalar values.

                          • Limitations when environment restoration is enabled:
                            • When environment restoration is enabled for the evaluated model (i.e. a non-local env_manager is specified), the model is loaded as a client that invokes a MLflow Model Scoring Server process in an independent Python environment with the model’s training time dependencies installed. As such, methods like predict_proba (for probability outputs) or score (computes the evaluation criterian for sklearn models) of the model become inaccessible and the default evaluator does not compute metrics or artifacts that require those methods.

                            • Because the model is an MLflow Model Server process, SHAP explanations are slower to compute. As such, model explainaibility is disabled when a non-local env_manager specified, unless the evaluator_config option log_model_explainability is explicitly set to True.

                            • model – A pyfunc model instance, or a URI referring to such a model.

                            • data

                              One of the following:

                            • A numpy array or list of evaluation features, excluding labels.

                            • A Pandas DataFrame or Spark DataFrame, containing evaluation features and labels. If feature_names argument not specified, all columns are regarded as feature columns. Otherwise, only column names present in feature_names are regarded as feature columns. If it is Spark DataFrame, only the first 10000 rows in the Spark DataFrame will be used as evaluation data.

                            • A :py:class`mlflow.data.dataset.Dataset` instance containing evaluation features and labels.

                            • targets – If data is a numpy array or list, a numpy array or list of evaluation labels. If data is a DataFrame, the string name of a column from data that contains evaluation labels. Required for classifier and regressor models, but optional for question-answering, text-summarization, and text models. If data is a :py:class`mlflow.data.dataset.Dataset` that defines targets, then targets is optional.

                            • model_type

                              A string describing the model type. The default evaluator supports the following model types:

                            • 'classifier'

                            • 'regressor'

                            • 'question-answering'

                            • 'text-summarization'

                            • 'text'

                            • 'question-answering', 'text-summarization', and 'text' are experimental and may be changed or removed in a future release.

                            • dataset_path – (Optional) The path where the data is stored. Must not contain double quotes (). If specified, the path is logged to the mlflow.datasets tag for lineage tracking purposes.

                            • feature_names – (Optional) If the data argument is a feature data numpy array or list, feature_names is a list of the feature names for each feature. If None, then the feature_names are generated using the format feature_{feature_index}. If the data argument is a Pandas DataFrame or a Spark DataFrame, feature_names is a list of the names of the feature columns in the DataFrame. If None, then all columns except the label column are regarded as feature columns.

                            • evaluators – The name of the evaluator to use for model evaluation, or a list of evaluator names. If unspecified, all evaluators capable of evaluating the specified model on the specified dataset are used. The default evaluator can be referred to by the name "default". To see all available evaluators, call mlflow.models.list_evaluators().

                            • evaluator_config – A dictionary of additional configurations to supply to the evaluator. If multiple evaluators are specified, each configuration should be supplied as a nested dictionary whose key is the evaluator name.

                            • custom_metrics

                              (Optional) A list of EvaluationMetric objects.

                              Example usage of custom metrics
                              import mlflow
                              import numpy as np
                              def root_mean_squared_error(eval_df, _builtin_metrics):
                                  return np.sqrt((np.abs(eval_df["prediction"] - eval_df["target"]) ** 2).mean)
                              rmse_metric = mlflow.models.make_metric(
                                  eval_fn=root_mean_squared_error,
                                  greater_is_better=False,
                              mlflow.evaluate(..., custom_metrics=[rmse_metric])
                              
                            • custom_artifacts

                              (Optional) A list of custom artifact functions with the following signature:

                              def custom_artifact(
                                  eval_df: Union[pandas.Dataframe, pyspark.sql.DataFrame],
                                  builtin_metrics: Dict[str, float],
                                  artifacts_dir: str,
                              ) -> Dict[str, Any]:
                                  :param eval_df:
                                      A Pandas or Spark DataFrame containing ``prediction`` and ``target`` column.
                                      The ``prediction`` column contains the predictions made by the model.
                                      The ``target`` column contains the corresponding labels to the predictions made
                                      on that row.
                                  :param builtin_metrics:
                                      A dictionary containing the metrics calculated by the default evaluator.
                                      The keys are the names of the metrics and the values are the scalar values of
                                      the metrics. Refer to the DefaultEvaluator behavior section for what metrics
                                      will be returned based on the type of model (i.e. classifier or regressor).
                                  :param artifacts_dir:
                                      A temporary directory path that can be used by the custom artifacts function to
                                      temporarily store produced artifacts. The directory will be deleted after the
                                      artifacts are logged.
                                  :return:
                                      A dictionary that maps artifact names to artifact objects
                                      (e.g. a Matplotlib Figure) or to artifact paths within ``artifacts_dir``.
                              

                              Object types that artifacts can be represented as:

                            • A string uri representing the file path to the artifact. MLflow will infer the type of the artifact based on the file extension.

                            • A string representation of a JSON object. This will be saved as a .json artifact.

                            • Pandas DataFrame. This will be resolved as a CSV artifact.

                            • Numpy array. This will be saved as a .npy artifact.

                            • Matplotlib Figure. This will be saved as an image artifact. Note that matplotlib.pyplot.savefig is called behind the scene with default configurations. To customize, either save the figure with the desired configurations and return its file path or define customizations through environment variables in matplotlib.rcParams.

                            • Other objects will be attempted to be pickled with the default protocol.

                            • Example usage of custom artifacts
                              import mlflow
                              import matplotlib.pyplot as plt
                              def scatter_plot(eval_df, builtin_metrics, artifacts_dir):
                                  plt.scatter(eval_df["prediction"], eval_df["target"])
                                  plt.xlabel("Targets")
                                  plt.ylabel("Predictions")
                                  plt.title("Targets vs. Predictions")
                                  plt.savefig(os.path.join(artifacts_dir, "example.png"))
                                  plt.close()
                                  return {"pred_target_scatter": os.path.join(artifacts_dir, "example.png")}
                              def pred_sample(eval_df, _builtin_metrics, _artifacts_dir):
                                  return {"pred_sample": pred_sample.head(10)}
                              mlflow.evaluate(..., custom_artifacts=[scatter_plot, pred_sample])
                              
                            • validation_thresholds

                              (Optional) A dictionary of metric name to mlflow.models.MetricThreshold used for model validation. Each metric name must either be the name of a builtin metric or the name of a custom metric defined in the custom_metrics parameter.

                              Example of Model Validation
                              from mlflow.models import MetricThreshold
                              thresholds = {
                                  "accuracy_score": MetricThreshold(
                                      # accuracy should be >=0.8
                                      threshold=0.8,
                                      # accuracy should be at least 5 percent greater than baseline model accuracy
                                      min_absolute_change=0.05,
                                      # accuracy should be at least 0.05 greater than baseline model accuracy
                                      min_relative_change=0.05,
                                      greater_is_better=True,
                              with mlflow.start_run():
                                  mlflow.evaluate(
                                      model=your_candidate_model,
                                      data,
                                      targets,
                                      model_type,
                                      dataset_name,
                                      evaluators,
                                      validation_thresholds=thresholds,
                                      baseline_model=your_baseline_model,
                              

                              See the Model Validation documentation for more details.

                            • baseline_model – (Optional) A string URI referring to an MLflow model with the pyfunc flavor. If specified, the candidate model is compared to this baseline for model validation purposes.

                            • env_manager

                              Specify an environment manager to load the candidate model and baseline_model in isolated Python evironments and restore their dependencies. Default value is local, and the following values are supported:

                            • virtualenv: (Recommended) Use virtualenv to restore the python environment that was used to train the model.

                            • conda: Use Conda to restore the software environment that was used to train the model.

                            • local: Use the current Python environment for model inference, which may differ from the environment used to train the model and may lead to errors or invalid predictions.

                            • mlflow.get_artifact_uri(artifact_path: Optional[str] = None)str[source]

                              Get the absolute URI of the specified artifact in the currently active run. If path is not specified, the artifact root URI of the currently active run will be returned; calls to log_artifact and log_artifacts write artifact(s) to subdirectories of the artifact root URI.

                              If no run is active, this method will create a new active run.

                              Parameters

                              artifact_path – The run-relative artifact path for which to obtain an absolute URI. For example, “path/to/artifact”. If unspecified, the artifact root URI for the currently active run will be returned.

                              Returns

                              An absolute URI referring to the specified artifact or the currently active run’s artifact root. For example, if an artifact path is provided and the currently active run uses an S3-backed store, this may be a uri of the form s3://<bucket_name>/path/to/artifact/root/path/to/artifact. If an artifact path is not provided and the currently active run uses an S3-backed store, this may be a URI of the form s3://<bucket_name>/path/to/artifact/root.

                              Example
                              import mlflow
                              features = "rooms, zipcode, median_price, school_rating, transport"
                              with open("features.txt", "w") as f:
                                  f.write(features)
                              # Log the artifact in a directory "features" under the root artifact_uri/features
                              with mlflow.start_run():
                                  mlflow
                              
                              
                              
                              
                                  
                              .log_artifact("features.txt", artifact_path="features")
                                  # Fetch the artifact uri root directory
                                  artifact_uri = mlflow.get_artifact_uri()
                                  print("Artifact uri: {}".format(artifact_uri))
                                  # Fetch a specific artifact uri
                                  artifact_uri = mlflow.get_artifact_uri(artifact_path="features/features.txt")
                                  print("Artifact uri: {}".format(artifact_uri))
                              mlflow.get_experiment(experiment_id: str)Experiment[source] 
                              

                              Retrieve an experiment by experiment_id from the backend store

                              Parameters

                              experiment_id – The string-ified experiment ID returned from create_experiment.

                              Returns

                              mlflow.entities.Experiment

                              Example
                              import mlflow
                              experiment = mlflow.get_experiment("0")
                              print("Name: {}".format(experiment.name))
                              print("Artifact Location: {}".format(experiment.artifact_location))
                              print("Tags: {}".format(experiment.tags))
                              print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
                              print("Creation timestamp: {}".format(experiment.creation_time))
                              mlflow.get_experiment_by_name(name: str)Optional[Experiment][source] 
                              

                              Retrieve an experiment by experiment name from the backend store

                              Parameters

                              name – The case sensitive experiment name.

                              Returns

                              An instance of mlflow.entities.Experiment if an experiment with the specified name exists, otherwise None.

                              Example
                              import mlflow
                              # Case sensitive name
                              experiment = mlflow.get_experiment_by_name("Default")
                              print("Experiment_id: {}".format(experiment.experiment_id))
                              print("Artifact Location: {}".format(experiment.artifact_location))
                              print("Tags: {}".format(experiment.tags))
                              print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
                              print("Creation timestamp: {}".format(experiment.creation_time))
                              mlflow.get_parent_run(run_id: str)Optional[Run][source] 
                              

                              Gets the parent run for the given run id if one exists.

                              Parameters

                              run_id – Unique identifier for the child run.

                              Returns

                              A single mlflow.entities.Run object, if the parent run exists. Otherwise, returns None.

                              Example
                              import mlflow
                              # Create nested runs
                              with mlflow.start_run():
                                  with mlflow.start_run(nested=True) as child_run:
                                      child_run_id = child_run.info.run_id
                              parent_run = mlflow.get_parent_run(child_run_id)
                              print("child_run_id: {}".format(child_run_id))
                              print("parent_run_id: {}".format(parent_run.info.run_id))
                              mlflow.get_registry_uri()str[source] 
                              

                              Get the current registry URI. If none has been specified, defaults to the tracking URI.

                              Returns

                              The registry URI.

                              Example
                              # Get the current model registry uri
                              mr_uri = mlflow.get_registry_uri()
                              print("Current model registry uri: {}".format(mr_uri))
                              # Get the current tracking uri
                              tracking_uri = mlflow.get_tracking_uri()
                              print("Current tracking uri: {}".format(tracking_uri))
                              # They should be the same
                              assert mr_uri == tracking_uri
                              mlflow.get_run(run_id: str)Run[source] 
                              

                              Fetch the run from backend store. The resulting Run contains a collection of run metadata – RunInfo, as well as a collection of run parameters, tags, and metrics – RunData. It also contains a collection of run inputs (experimental), including information about datasets used by the run – RunInputs. In the case where multiple metrics with the same key are logged for the run, the RunData contains the most recently logged value at the largest step for each metric.

                              Parameters

                              run_id – Unique identifier for the run.

                              Returns

                              A single mlflow.entities.Run object, if the run exists. Otherwise, raises an exception.

                              Example
                              import mlflow
                              with mlflow.start_run() as run:
                                  mlflow.log_param("p", 0)
                              run_id = run.info.run_id
                              print(
                                  "run_id: {}; lifecycle_stage: {}".format(
                                      run_id, mlflow.get_run(run_id).info.lifecycle_stage
                              mlflow.
                              
                              
                              
                              
                                  
                              get_tracking_uri()str[source] 
                              

                              Get the current tracking URI. This may not correspond to the tracking URI of the currently active run, since the tracking URI can be updated via set_tracking_uri.

                              Returns

                              The tracking URI.

                              Example
                              import mlflow
                              # Get the current tracking uri
                              tracking_uri = mlflow.get_tracking_uri()
                              print("Current tracking uri: {}".format(tracking_uri))
                              mlflow.last_active_run()Optional[Run][source] 
                              

                              Gets the most recent active run.

                              Examples:

                              To retrieve the most recent autologged run:
                              import mlflow
                              from sklearn.model_selection import train_test_split
                              from sklearn.datasets import load_diabetes
                              from sklearn.ensemble import RandomForestRegressor
                              mlflow.autolog()
                              db = load_diabetes()
                              X_train, X_test, y_train, y_test = train_test_split(db.data, db.target)
                              # Create and train models.
                              rf = RandomForestRegressor(n_estimators=100, max_depth=6, max_features=3)
                              rf.fit(X_train, y_train)
                              # Use the model to make predictions on the test dataset.
                              predictions = rf.predict(X_test)
                              autolog_run = mlflow.last_active_run()
                              
                              Returns

                              The active run (this is equivalent to mlflow.active_run()) if one exists. Otherwise, the last run started from the current Python process that reached a terminal status (i.e. FINISHED, FAILED, or KILLED).

                              mlflow.load_table(artifact_file: str, run_ids: Optional[List[str]] = None, extra_columns: Optional[List[str]] = None)pandas.DataFrame[source]

                              Experimental: This function may change or be removed in a future release without warning.

                              Load a table from MLflow Tracking as a pandas.DataFrame. The table is loaded from the specified artifact_file in the specified run_ids. The extra_columns are columns that are not in the table but are augmented with run information and added to the DataFrame.

                              Parameters
                            • artifact_file – The run-relative artifact file path in posixpath format to which table to load (e.g. “dir/file.json”).

                            • run_ids – Optional list of run_ids to load the table from. If no run_ids are specified, the table is loaded from all runs in the current experiment.

                            • extra_columns – Optional list of extra columns to add to the returned DataFrame For example, if extra_columns=[“run_id”], then the returned DataFrame will have a column named run_id.

                            • Returns

                              pandas.DataFrame containing the loaded table if the artifact exists or else throw a MlflowException.

                              Example with passing run_ids
                              import mlflow
                              table_dict = {
                                  "inputs": ["What is MLflow?", "What is Databricks?"],
                                  "outputs": ["MLflow is ...", "Databricks is ..."],
                                  "toxicity": [0.0, 0.0],
                              with mlflow.start_run() as run:
                                  # Log the dictionary as a table
                                  mlflow.log_table(data=table_dict, artifact_file="qabot_eval_results.json")
                                  run_id = run.info.run_id
                              loaded_table = mlflow.load_table(
                                  artifact_file="qabot_eval_results.json",
                                  run_ids=[run_id],
                                  # Append a column containing the associated run ID for each row
                                  extra_columns=["run_id"],
                              
                              Example with passing no run_ids
                              # Loads the table with the specified name for all runs in the given
                              # experiment and joins them together
                              import mlflow
                              table_dict = {
                                  "inputs": ["What is MLflow?", "What is Databricks?"],
                                  "outputs": ["MLflow is ...", "Databricks is ..."],
                                  "toxicity": [0.0, 0.0],
                              with mlflow.start_run():
                                  # Log the dictionary as a table
                                  mlflow.log_table(data=table_dict, artifact_file="qabot_eval_results.json")
                              loaded_table = mlflow.load_table(
                                  "qabot_eval_results.json",
                                  # Append the run ID and the parent run ID to the table
                                  extra_columns=["run_id"],
                              mlflow.log_artifact(local_path: str, artifact_path: Optional[str] = None)None[source] 
                              

                              Log a local file or directory as an artifact of the currently active run. If no run is active, this method will create a new active run.

                              Parameters
                            • local_path – Path to the file to write.

                            • artifact_path – If provided, the directory in artifact_uri to write to.

                            • # Create a features.txt artifact file features = "rooms, zipcode, median_price, school_rating, transport" with open("features.txt", "w") as f: f.write(features) # With artifact_path=None write features.txt under # root artifact_uri/artifacts directory with mlflow.start_run(): mlflow.log_artifact("features.txt") mlflow.log_artifacts(local_dir: str, artifact_path: Optional[str] = None)None[source]

                              Log all the contents of a local directory as artifacts of the run. If no run is active, this method will create a new active run.

                              Parameters
                            • local_dir – Path to the directory of files to write.

                            • artifact_path – If provided, the directory in artifact_uri to write to.

                            • # Create some files to preserve as artifacts features = "rooms, zipcode, median_price, school_rating, transport" data = {"state": "TX", "Available": 25, "Type": "Detached"} # Create couple of artifact files under the directory "data" os.makedirs("data", exist_ok=True) with open("data/data.json", "w", encoding="utf-8") as f: json.dump(data , f, indent=2) with open("data/features.txt", "w") as f: f.write(features) # Write all files in "data" to root artifact_uri/states with mlflow.start_run(): mlflow.log_artifacts("data", artifact_path="states") mlflow.log_dict(dictionary: Dict[str, Any], artifact_file: str)None[source]

                              Log a JSON/YAML-serializable object (e.g. dict) as an artifact. The serialization format (JSON or YAML) is automatically inferred from the extension of artifact_file. If the file extension doesn’t exist or match any of [“.json”, “.yml”, “.yaml”], JSON format is used.

                              Parameters
                            • dictionary – Dictionary to log.

                            • artifact_file – The run-relative artifact file path in posixpath format to which the dictionary is saved (e.g. “dir/data.json”).

                            • with mlflow.start_run(): # Log a dictionary as a JSON file under the run's root artifact directory mlflow.log_dict(dictionary, "data.json") # Log a dictionary as a YAML file in a subdirectory of the run's root artifact directory mlflow.log_dict(dictionary, "dir/data.yml") # If the file extension doesn't exist or match any of [".json", ".yaml", ".yml"], # JSON format is used. mlflow.log_dict(dictionary, "data") mlflow.log_dict(dictionary, "data.txt") mlflow.log_figure(figure: Union[matplotlib.figure.Figure, plotly.graph_objects.Figure], artifact_file: str, *, save_kwargs: Optional[Dict[str, Any]] = None)None[source]

                              Log a figure as an artifact. The following figure objects are supported:

                            • matplotlib.figure.Figure

                            • plotly.graph_objects.Figure

                            • Parameters
                            • figure – Figure to log.

                            • artifact_file – The run-relative artifact file path in posixpath format to which the figure is saved (e.g. “dir/file.png”).

                            • save_kwargs – Additional keyword arguments passed to the method that saves the figure.

                            • from plotly import graph_objects as go fig = go.Figure(go.Scatter(x=[0, 1], y=[2, 3])) with mlflow.start_run(): mlflow.log_figure(fig, "figure.html") mlflow.log_image(image: Union[numpy.ndarray, PIL.Image.Image], artifact_file: str)None[source]

                              Log an image as an artifact. The following image objects are supported:

                            • numpy.ndarray

                            • PIL.Image.Image

                            • Numpy array support
                              • data type (( ) represents a valid value range):

                              • integer (0 ~ 255)

                              • unsigned integer (0 ~ 255)

                              • float (0.0 ~ 1.0)

                              • Warning

                              • Out-of-range integer values will be clipped to [0, 255].

                              • Out-of-range float values will be clipped to [0, 1].

                              • image – Image to log.

                              • artifact_file – The run-relative artifact file path in posixpath format to which the image is saved (e.g. “dir/image.png”).

                              • import numpy as np image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8) with mlflow.start_run(): mlflow.log_image(image, "image.png") mlflow.log_input(dataset: mlflow.data.dataset.Dataset, context: Optional[str] = None, tags: Optional[Dict[str, str]] = None)None[source]

                                Experimental: This function may change or be removed in a future release without warning.

                                Log a dataset used in the current run.

                                Parameters
                              • datasetmlflow.data.dataset.Dataset object to be logged.

                              • context – Context in which the dataset is used. For example: “training”, “testing”. This will be set as an input tag with key mlflow.data.context.

                              • tags – Tags to be associated with the dataset. Dictionary of tag_key -> tag_value.

                              • Returns
                                Example
                                import numpy as np
                                import mlflow
                                array = np.asarray([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
                                dataset = mlflow.data.from_numpy(array, source="data.csv")
                                # Log an input dataset used for training
                                with mlflow.start_run():
                                    mlflow.log_input(dataset, context="training")
                                mlflow.log_metric(key: str, value: float, step: Optional[int] = None)None[source] 
                                

                                Log a metric under the current run. If no run is active, this method will create a new active run.

                                Parameters
                              • key – Metric name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys.

                              • value – Metric value (float). Note that some special values such as +/- Infinity may be replaced by other values depending on the store. For example, the SQLAlchemy store replaces +/- Infinity with max / min float values. All backend stores will support values up to length 5000, but some may support larger values.

                              • step – Metric step (int). Defaults to zero if unspecified.

                              • mlflow.log_metrics(metrics: Dict[str, float], step: Optional[int ] = None)None[source]

                                Log multiple metrics for the current run. If no run is active, this method will create a new active run.

                                Parameters
                              • metrics – Dictionary of metric_name: String -> value: Float. Note that some special values such as +/- Infinity may be replaced by other values depending on the store. For example, sql based store may replace +/- Infinity with max / min float values.

                              • step – A single integer step at which to log the specified Metrics. If unspecified, each metric is logged at step zero.

                              • Returns
                                Example
                                import mlflow
                                metrics = {"mse": 2500.00, "rmse": 50.00}
                                # Log a batch of metrics
                                with mlflow.start_run():
                                    mlflow.log_metrics(metrics)
                                mlflow.log_param(key: str, value: Any)Any[source] 
                                

                                Log a parameter (e.g. model hyperparameter) under the current run. If no run is active, this method will create a new active run.

                                Parameters
                              • key – Parameter name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores support keys up to length 250, but some may support larger keys.

                              • value – Parameter value (string, but will be string-ified if not). All backend stores support values up to length 500, but some may support larger values.

                              • Returns

                                the parameter value that is logged.

                                Example
                                import mlflow
                                with mlflow.start_run():
                                    value = mlflow.log_param("learning_rate", 0.01)
                                    assert value == 0.01
                                mlflow.log_params(params: Dict[str, Any])None[source] 
                                

                                Log a batch of params for the current run. If no run is active, this method will create a new active run.

                                Parameters

                                params – Dictionary of param_name: String -> value: (String, but will be string-ified if

                                Returns
                                Example
                                import mlflow
                                params = {"learning_rate": 0.01, "n_estimators": 10}
                                # Log a batch of parameters
                                with mlflow.start_run():
                                    mlflow.log_params(params)
                                mlflow.log_table(data: Union[Dict[str, Any], pandas.DataFrame], artifact_file: str)None[source] 
                                

                                Experimental: This function may change or be removed in a future release without warning.

                                Log a table to MLflow Tracking as a JSON artifact. If the artifact_file already exists in the run, the data would be appended to the existing artifact_file.

                                Parameters
                              • data – Dictionary or pandas.DataFrame to log.

                              • artifact_file – The run-relative artifact file path in posixpath format to which the table is saved (e.g. “dir/file.json”).

                              • Returns
                                Dictionary Example
                                import mlflow
                                table_dict = {
                                    "inputs": ["What is MLflow?", "What is Databricks?"],
                                    "outputs": ["MLflow is ...", "Databricks is ..."],
                                    "toxicity": [0.0, 0.0],
                                with mlflow.start_run():
                                    # Log the dictionary as a table
                                    mlflow.log_table(data=table_dict, artifact_file="qabot_eval_results.json")
                                table_dict = {
                                    "inputs": ["What is MLflow?", "What is Databricks?"],
                                    "outputs": ["MLflow is ...", "Databricks is ..."],
                                    "toxicity": [0.0, 0.0],
                                df = pd.DataFrame.from_dict(table_dict)
                                with mlflow.start_run():
                                    # Log the df as a table
                                    mlflow.log_table(data=df, artifact_file="qabot_eval_results.json")
                                mlflow.log_text(text: str, artifact_file: str)None[source] 
                                

                                Log text as an artifact.

                                Parameters
                              • text – String containing text to log.

                              • artifact_file – The run-relative artifact file path in posixpath format to which the text is saved (e.g. “dir/file.txt”).

                              • with mlflow.start_run(): # Log text to a file under the run's root artifact directory mlflow.log_text("text1", "file1.txt") # Log text in a subdirectory of the run's root artifact directory mlflow.log_text("text2", "dir/file2.txt") # Log HTML text mlflow.log_text("<h1>header</h1>", "index.html") mlflow.register_model(model_uri, name, await_registration_for=300, *, tags: Optional[Dict[str, Any]] = None)ModelVersion[source]

                                Create a new model version in model registry for the model files specified by model_uri. Note that this method assumes the model registry backend URI is the same as that of the tracking backend.

                                Parameters
                              • model_uri – URI referring to the MLmodel directory. Use a runs:/ URI if you want to record the run ID with the model in model registry. models:/ URIs are currently not supported.

                              • name – Name of the registered model under which to create a new model version. If a registered model with the given name does not exist, it will be created automatically.

                              • await_registration_for – Number of seconds to wait for the model version to finish being created and is in READY status. By default, the function waits for five minutes. Specify 0 or None to skip waiting.

                              • tags – A dictionary of key-value pairs that are converted into mlflow.entities.model_registry.ModelVersionTag objects.

                              • Returns

                                Single mlflow.entities.model_registry.ModelVersion object created by backend.

                                Example
                                import mlflow.sklearn
                                from mlflow.models import infer_signature
                                from sklearn.datasets import make_regression
                                from sklearn.ensemble import RandomForestRegressor
                                mlflow.set_tracking_uri("sqlite:////tmp/mlruns.db")
                                params = {"n_estimators": 3, "random_state": 42
                                
                                
                                
                                
                                    
                                }
                                X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
                                # Log MLflow entities
                                with mlflow.start_run() as run:
                                    rfr = RandomForestRegressor(**params).fit(X, y)
                                    signature = infer_signature(X, rfr.predict(X))
                                    mlflow.log_params(params)
                                    mlflow.sklearn.log_model(rfr, artifact_path="sklearn-model", signature=signature)
                                model_uri = "runs:/{}/sklearn-model".format(run.info.run_id)
                                mv = mlflow.register_model(model_uri, "RandomForestRegressionModel")
                                print("Name: {}".format(mv.name))
                                print("Version: {}".format(mv.version))
                                mlflow.run(uri, entry_point='main', version=None, parameters=None, docker_args=None, experiment_name=None, experiment_id=None, backend='local', backend_config=None, storage_dir=None, synchronous=True, run_id=None, run_name=None, env_manager=None, build_image=False, docker_auth=None)[source] 
                                

                                Run an MLflow project. The project can be local or stored at a Git URI.

                                MLflow provides built-in support for running projects locally or remotely on a Databricks or Kubernetes cluster. You can also run projects against other targets by installing an appropriate third-party plugin. See Community Plugins for more information.

                                For information on using this method in chained workflows, see Building Multistep Workflows.

                                Raises

                                mlflow.exceptions.ExecutionException If a run launched in blocking mode is unsuccessful.

                                Parameters
                              • uri – URI of project to run. A local filesystem path or a Git repository URI (e.g. https://github.com/mlflow/mlflow-example) pointing to a project directory containing an MLproject file.

                              • entry_point – Entry point to run within the project. If no entry point with the specified name is found, runs the project file entry_point as a script, using “python” to run .py files and the default shell (specified by environment variable $SHELL) to run .sh files.

                              • version – For Git-based projects, either a commit hash or a branch name.

                              • parameters – Parameters (dictionary) for the entry point command.

                              • docker_args – Arguments (dictionary) for the docker command.

                              • experiment_name – Name of experiment under which to launch the run.

                              • experiment_id – ID of experiment under which to launch the run.

                              • backend – Execution backend for the run: MLflow provides built-in support for “local”, “databricks”, and “kubernetes” (experimental) backends. If running against Databricks, will run against a Databricks workspace determined as follows: if a Databricks tracking URI of the form databricks://profile has been set (e.g. by setting the MLFLOW_TRACKING_URI environment variable), will run against the workspace specified by <profile>. Otherwise, runs against the workspace specified by the default Databricks CLI profile.

                              • backend_config – A dictionary, or a path to a JSON file (must end in ‘.json’), which will be passed as config to the backend. The exact content which should be provided is different for each execution backend and is documented at https://www.mlflow.org/docs/latest/projects.html.

                              • storage_dir – Used only if backend is “local”. MLflow downloads artifacts from distributed URIs passed to parameters of type path to subdirectories of storage_dir.

                              • synchronous – Whether to block while waiting for a run to complete. Defaults to True. Note that if synchronous is False and backend is “local”, this method will return, but the current process will block when exiting until the local run completes. If the current process is interrupted, any asynchronous runs launched via this method will be terminated. If synchronous is True and the run fails, the current process will error out as well.

                              • run_id – Note: this argument is used internally by the MLflow project APIs and should not be specified. If specified, the run ID will be used instead of creating a new run.

                              • run_name – The name to give the MLflow Run associated with the project execution. If None, the MLflow Run name is left unset.

                              • env_manager

                                Specify an environment manager to create a new environment for the run and install project dependencies within that environment. The following values are supported:

                              • local: use the local environment

                              • virtualenv: use virtualenv (and pyenv for Python version management)

                              • conda: use conda

                              • If unspecified, MLflow automatically determines the environment manager to use by inspecting files in the project directory. For example, if python_env.yaml is present, virtualenv will be used.

                              • build_image – Whether to build a new docker image of the project or to reuse an existing image. Default: False (reuse an existing image)

                              • docker_auth – A dictionary representing information to authenticate with a Docker registry. See docker.client.DockerClient.login for available options.

                              • Returns

                                mlflow.projects.SubmittedRun exposing information (e.g. run ID) about the launched run.

                                Example
                                import mlflow
                                project_uri = "https://github.com/mlflow/mlflow-example"
                                params = {"alpha": 0.5, "l1_ratio": 0.01}
                                # Run MLflow project and create a reproducible conda environment
                                # on a local host
                                mlflow.run(project_uri, parameters=params)
                                Elasticnet model (alpha=0.500000, l1_ratio=0.010000):
                                RMSE: 0.788347345611717
                                MAE: 0.6155576449938276
                                R2: 0.19729662005412607
                                ... mlflow.projects: === Run (ID '6a5109febe5e4a549461e149590d0a7c') succeeded ===
                                mlflow.search_experiments(view_type: int = 1, max_results: Optional[int] = None, filter_string: Optional[str] = None, order_by: Optional[List[str]] = None)List[Experiment][source] 
                                

                                Search for experiments that match the specified search query.

                                Parameters
                              • view_type – One of enum values ACTIVE_ONLY, DELETED_ONLY, or ALL defined in mlflow.entities.ViewType.

                              • max_results – If passed, specifies the maximum number of experiments desired. If not passed, all experiments will be returned.

                              • filter_string

                                Filter query string (e.g., "name = 'my_experiment'"), defaults to searching for all experiments. The following identifiers, comparators, and logical operators are supported.

                                Identifiers
                                • name: Experiment name

                                • creation_time : Experiment creation time

                                • last_update_time: Experiment last update time

                                • tags.<tag_key>: Experiment tag. If tag_key contains spaces, it must be wrapped with backticks (e.g., "tags.`extra key`").

                                • Comparators for string attributes and tags
                                  • =: Equal to

                                  • !=: Not equal to

                                  • LIKE: Case-sensitive pattern match

                                  • ILIKE: Case-insensitive pattern match

                                  • Comparators for numeric attributes
                                    • =: Equal to

                                    • !=: Not equal to

                                    • <: Less than

                                    • <=: Less than or equal to

                                    • >: Greater than

                                    • >=: Greater than or equal to

                                    • Logical operators
                                      • AND: Combines two sub-queries and returns True if both of them are True.

                                      • order_by

                                        List of columns to order by. The order_by column can contain an optional DESC or ASC value (e.g., "name DESC"). The default ordering is ASC, so "name" is equivalent to "name ASC". If unspecified, defaults to ["last_update_time DESC"], which lists experiments updated most recently first. The following fields are supported:

                                      • experiment_id: Experiment ID

                                      • name: Experiment name

                                      • creation_time: Experiment creation time

                                      • last_update_time: Experiment last update time

                                      • def assert_experiment_names_equal(experiments, expected_names): actual_names = [e.name for e in experiments if e.name != "Default"] assert actual_names == expected_names, (actual_names, expected_names) mlflow.set_tracking_uri("sqlite:///:memory:") # Create experiments for name, tags in [ ("a", None), ("b", None), ("ab", {"k": "v"}), ("bb", {"k": "V"}), mlflow.create_experiment(name, tags=tags) # Search for experiments with name "a" experiments = mlflow.search_experiments(filter_string="name = 'a'") assert_experiment_names_equal(experiments, ["a"]) # Search for experiments with name starting with "a" experiments = mlflow.search_experiments(filter_string="name LIKE 'a%'") assert_experiment_names_equal(experiments, ["ab", "a"]) # Search for experiments with tag key "k" and value ending with "v" or "V" experiments = mlflow.search_experiments(filter_string="tags.k ILIKE '%v'") assert_experiment_names_equal(experiments, ["bb", "ab"]) # Search for experiments with name ending with "b" and tag {"k": "v"} experiments = mlflow.search_experiments(filter_string="name LIKE '%b' AND tags.k = 'v'") assert_experiment_names_equal(experiments, ["ab"]) # Sort experiments by name in ascending order experiments = mlflow.search_experiments(order_by=["name"]) assert_experiment_names_equal(experiments, ["a", "ab", "b", "bb"]) # Sort experiments by ID in descending order experiments = mlflow.search_experiments(order_by=["experiment_id DESC"]) assert_experiment_names_equal(experiments, ["bb", "ab", "b", "a"]) mlflow.search_model_versions(max_results: Optional[int] = None, filter_string: Optional[str] = None, order_by: Optional[List[str]] = None)List[ModelVersion][source]

                                        Search for model versions that satisfy the filter criteria.

                                        Parameters
                                      • filter_string

                                        Filter query string (e.g., "name = 'a_model_name' and tag.key = 'value1'"), defaults to searching for all model versions. The following identifiers, comparators, and logical operators are supported.

                                        Identifiers
                                        • name: model name.

                                        • source_path: model version source path.

                                        • run_id: The id of the mlflow run that generates the model version.

                                        • tags.<tag_key>: model version tag. If tag_key contains spaces, it must be wrapped with backticks (e.g., "tags.`extra key`").

                                        • Comparators
                                          • =: Equal to.

                                          • !=: Not equal to.

                                          • LIKE: Case-sensitive pattern match.

                                          • ILIKE: Case-insensitive pattern match.

                                          • IN: In a value list. Only run_id identifier supports IN comparator.

                                          • Logical operators
                                            • AND: Combines two sub-queries and returns True if both of them are True.

                                            • max_results – If passed, specifies the maximum number of models desired. If not passed, all models will be returned.

                                            • order_by – List of column names with ASC|DESC annotation, to be used for ordering matching search results.

                                            • Returns

                                              A list of mlflow.entities.model_registry.ModelVersion objects that satisfy the search expressions.

                                              Example
                                              import mlflow
                                              from sklearn.linear_model import LogisticRegression
                                              for _ in range(2):
                                                  with mlflow.start_run():
                                                      mlflow.sklearn.log_model(
                                                          LogisticRegression(),
                                                          "Cordoba",
                                                          registered_model_name="CordobaWeatherForecastModel",
                                              # Get all versions of the model filtered by name
                                              filter_string = "name = 'CordobaWeatherForecastModel'"
                                              results = mlflow.search_model_versions(filter_string=filter_string)
                                              print("-" * 80)
                                              for res in results:
                                                  print("name={}; run_id={}; version={}".format(res.name, res.run_id, res.version))
                                              # Get the version of the model filtered by run_id
                                              filter_string = "run_id = 'ae9a606a12834c04a8ef1006d0cff779'"
                                              results = mlflow.search_model_versions(filter_string=filter_string)
                                              print("-" * 80)
                                              for res in results:
                                                  print(
                                              
                                              
                                              
                                              
                                                  
                                              "name={}; run_id={}; version={}".format(res.name, res.run_id, res.version))
                                              
                                              Output
                                              --------------------------------------------------------------------------------
                                              name=CordobaWeatherForecastModel; run_id=ae9a606a12834c04a8ef1006d0cff779; version=2
                                              name=CordobaWeatherForecastModel; run_id=d8f028b5fedf4faf8e458f7693dfa7ce; version=1
                                              --------------------------------------------------------------------------------
                                              name=CordobaWeatherForecastModel; run_id=ae9a606a12834c04a8ef1006d0cff779; version=2
                                              mlflow.search_registered_models(max_results: Optional[int] = None, filter_string: Optional[str] = None, order_by: Optional[List[str]] = None)List[RegisteredModel][source] 
                                              

                                              Search for registered models that satisfy the filter criteria.

                                              Parameters
                                            • filter_string

                                              Filter query string (e.g., "name = 'a_model_name' and tag.key = 'value1'"), defaults to searching for all registered models. The following identifiers, comparators, and logical operators are supported.

                                              Identifiers
                                              • name: registered model name.

                                              • tags.<tag_key>: registered model tag. If tag_key contains spaces, it must be wrapped with backticks (e.g., "tags.`extra key`").

                                              • Comparators
                                                • =: Equal to.

                                                • !=: Not equal to.

                                                • LIKE: Case-sensitive pattern match.

                                                • ILIKE: Case-insensitive pattern match.

                                                • Logical operators
                                                  • AND: Combines two sub-queries and returns True if both of them are True.

                                                  • max_results – If passed, specifies the maximum number of models desired. If not passed, all models will be returned.

                                                  • order_by – List of column names with ASC|DESC annotation, to be used for ordering matching search results.

                                                  • Returns

                                                    A list of mlflow.entities.model_registry.RegisteredModel objects that satisfy the search expressions.

                                                    Example
                                                    import mlflow
                                                    from sklearn.linear_model import LogisticRegression
                                                    with mlflow.start_run():
                                                        mlflow.sklearn.log_model(
                                                            LogisticRegression(),
                                                            "Cordoba",
                                                            registered_model_name="CordobaWeatherForecastModel",
                                                        mlflow.sklearn.log_model(
                                                            LogisticRegression(),
                                                            "Boston",
                                                            registered_model_name="BostonWeatherForecastModel",
                                                    # Get search results filtered by the registered model name
                                                    filter_string = "name = 'CordobaWeatherForecastModel'"
                                                    results = mlflow.search_registered_models(filter_string=filter_string)
                                                    print("-" * 80)
                                                    for res in results:
                                                        for mv in res.latest_versions:
                                                            print("name={}; run_id={}; version={}".format(mv.name, mv.run_id, mv.version))
                                                    # Get search results filtered by the registered model name that matches
                                                    # prefix pattern
                                                    filter_string = "name LIKE 'Boston%'"
                                                    results = mlflow.search_registered_models(filter_string=filter_string)
                                                    print("-" * 80)
                                                    for res in results:
                                                        for mv in res.latest_versions:
                                                            print("name={}; run_id={}; version={}".format(mv.name, mv.run_id, mv.version))
                                                    # Get all registered models and order them by ascending order of the names
                                                    results = mlflow.search_registered_models(order_by=["name ASC"])
                                                    print("-" * 80)
                                                    for res in results:
                                                        for mv in res.latest_versions:
                                                            print("name={}; run_id={}; version={}".format(mv.name, mv.run_id, mv.version))
                                                    
                                                    Output
                                                    --------------------------------------------------------------------------------
                                                    name=CordobaWeatherForecastModel; run_id=248c66a666744b4887bdeb2f9cf7f1c6; version=1
                                                    --------------------------------------------------------------------------------
                                                    name=BostonWeatherForecastModel; run_id=248c66a666744b4887bdeb2f9cf7f1c6; version=1
                                                    --------------------------------------------------------------------------------
                                                    name=BostonWeatherForecastModel; run_id=248c66a666744b4887bdeb2f9cf7f1c6; version=1
                                                    name=CordobaWeatherForecastModel; run_id=248c66a666744b4887bdeb2f9cf7f1c6; version=1
                                                    mlflow.search_runs(experiment_ids: Optional[List[str]] = None, filter_string: str = '', run_view_type: int = 1, max_results: int = 100000, order_by: Optional[List[str]] = None, output_format: str = 'pandas', search_all_experiments: bool = False, experiment_names: Optional[List[str]] = None)Union[List[Run], pandas.DataFrame][source] 
                                                    

                                                    Search for Runs that fit the specified criteria.

                                                    Parameters
                                                  • experiment_ids – List of experiment IDs. Search can work with experiment IDs or experiment names, but not both in the same call. Values other than None or [] will result in error if experiment_names is also not None or []. None will default to the active experiment if experiment_names is None or [].

                                                  • filter_string – Filter query string, defaults to searching all runs.

                                                  • run_view_type – one of enum values ACTIVE_ONLY, DELETED_ONLY , or ALL runs defined in mlflow.entities.ViewType.

                                                  • max_results – The maximum number of runs to put in the dataframe. Default is 100,000 to avoid causing out-of-memory issues on the user’s machine.

                                                  • order_by – List of columns to order by (e.g., “metrics.rmse”). The order_by column can contain an optional DESC or ASC value. The default is ASC. The default ordering is to sort by start_time DESC, then run_id.

                                                  • output_format – The output format to be returned. If pandas, a pandas.DataFrame is returned and, if list, a list of mlflow.entities.Run is returned.

                                                  • search_all_experiments – Boolean specifying whether all experiments should be searched. Only honored if experiment_ids is [] or None.

                                                  • experiment_names – List of experiment names. Search can work with experiment IDs or experiment names, but not both in the same call. Values other than None or [] will result in error if experiment_ids is also not None or []. None will default to the active experiment if experiment_ids is None or [].

                                                  • Returns

                                                    If output_format is list: a list of mlflow.entities.Run. If output_format is pandas: pandas.DataFrame of runs, where each metric, parameter, and tag is expanded into its own column named metrics.*, params.*, or tags.* respectively. For runs that don’t have a particular metric, parameter, or tag, the value for the corresponding column is (NumPy) Nan, None, or None respectively.

                                                    Example
                                                    import mlflow
                                                    # Create an experiment and log two runs under it
                                                    experiment_name = "Social NLP Experiments"
                                                    experiment_id = mlflow.create_experiment(experiment_name)
                                                    with mlflow.start_run(experiment_id=experiment_id):
                                                        mlflow.log_metric("m", 1.55)
                                                        mlflow.set_tag("s.release", "1.1.0-RC")
                                                    with mlflow.start_run(experiment_id=experiment_id):
                                                        mlflow.log_metric("m", 2.50)
                                                        mlflow.set_tag("s.release", "1.2.0-GA")
                                                    # Search for all the runs in the experiment with the given experiment ID
                                                    df = mlflow.search_runs([experiment_id], order_by=["metrics.m DESC"])
                                                    print(df[["metrics.m", "tags.s.release", "run_id"]])
                                                    print("--")
                                                    # Search the experiment_id using a filter_string with tag
                                                    # that has a case insensitive pattern
                                                    filter_string = "tags.s.release ILIKE '%rc%'"
                                                    df = mlflow.search_runs([experiment_id], filter_string=filter_string)
                                                    print(df[["metrics.m", "tags.s.release", "run_id"]])
                                                    print("--")
                                                    # Search for all the runs in the experiment with the given experiment name
                                                    df = mlflow.search_runs(experiment_names=[experiment_name], order_by=["metrics.m DESC"])
                                                    print(df[["metrics.m", "tags.s.release", "run_id"]])
                                                    
                                                    Output
                                                       metrics.m tags.s.release                            run_id
                                                    0       2.50       1.2.0-GA  147eed886ab44633902cc8e19b2267e2
                                                    1       1.55       1.1.0-RC  5cc7feaf532f496f885ad7750809c4d4
                                                       metrics.m tags.s.release                            run_id
                                                    0       1.55       1.1.0-RC  5cc7feaf532f496f885ad7750809c4d4
                                                       metrics.m tags.s.release                            run_id
                                                    0       2.50       1.2.0-GA  147eed886ab44633902cc8e19b2267e2
                                                    1       1.55       1.1.0-RC  5cc7feaf532f496f885ad7750809c4d4
                                                    mlflow.set_experiment(experiment_name: Optional[str] = None, experiment_id: Optional[str] = None)Experiment[source] 
                                                    

                                                    Set the given experiment as the active experiment. The experiment must either be specified by name via experiment_name or by ID via experiment_id. The experiment name and ID cannot both be specified.

                                                    Parameters
                                                  • experiment_name – Case sensitive name of the experiment to be activated. If an experiment with this name does not exist, a new experiment wth this name is created. On certain platforms such as Databricks, the experiment name must an absolute path, e.g. "/Users/<username>/my-experiment".

                                                  • experiment_id – ID of the experiment to be activated. If an experiment with this ID does not exist, an exception is thrown.

                                                  • Returns

                                                    An instance of mlflow.entities.Experiment representing the new active experiment.

                                                    Example
                                                    import mlflow
                                                    # Set an experiment name, which must be unique and case-sensitive.
                                                    experiment = mlflow.set_experiment("Social NLP Experiments")
                                                    # Get Experiment Details
                                                    print("Experiment_id: {}".format(experiment.experiment_id))
                                                    print("Artifact Location: {}".format(experiment.artifact_location))
                                                    print("Tags: {}".format(experiment.tags))
                                                    print("Lifecycle_stage: {}".format(experiment.lifecycle_stage))
                                                    mlflow.set_experiment_tag(key: str, value: Any)None[source] 
                                                    

                                                    Set a tag on the current experiment. Value is converted to a string.

                                                    Parameters
                                                  • key – Tag name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys.

                                                  • value – Tag value (string, but will be string-ified if not). All backend stores will support values up to length 5000, but some may support larger values.

                                                  • mlflow.set_experiment_tags(tags: Dict[str, Any])None[source]

                                                    Set tags for the current active experiment.

                                                    Parameters

                                                    tags – Dictionary containing tag names and corresponding values.

                                                    Example
                                                    import mlflow
                                                    tags = {
                                                        "engineering": "ML Platform",
                                                        "release.candidate": "RC1",
                                                        "release.version": "2.2.0",
                                                    # Set a batch of tags
                                                    with mlflow.start_run():
                                                        mlflow.set_experiment_tags(tags)
                                                    mlflow.set_registry_uri(uri: str)None[source] 
                                                    

                                                    Set the registry server URI. This method is especially useful if you have a registry server that’s different from the tracking server.

                                                    Parameters

                                                    uri

                                                    • An empty string, or a local file path, prefixed with file:/. Data is stored locally at the provided file (or ./mlruns if empty).

                                                    • An HTTP URI like https://my-tracking-server:5000.

                                                    • A Databricks workspace, provided as the string “databricks” or, to use a Databricks CLI profile, “databricks://<profileName>”.

                                                    • # Set model registry uri, fetch the set uri, and compare # it with the tracking uri. They should be different mlflow.set_registry_uri("sqlite:////tmp/registry.db") mr_uri = mlflow.get_registry_uri() print("Current registry uri: {}".format(mr_uri)) tracking_uri = mlflow.get_tracking_uri() print("Current tracking uri: {}".format(tracking_uri)) # They should be different assert tracking_uri != mr_uri mlflow.set_tag(key: str, value: Any)None[source]

                                                      Set a tag under the current run. If no run is active, this method will create a new active run.

                                                      Parameters
                                                    • key – Tag name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys.

                                                    • value – Tag value (string, but will be string-ified if not). All backend stores will support values up to length 5000, but some may support larger values.

                                                    • mlflow.set_tags(tags: Dict[str, Any])None[source]

                                                      Log a batch of tags for the current run. If no run is active, this method will create a new active run.

                                                      Parameters

                                                      tags – Dictionary of tag_name: String -> value: (String, but will be string-ified if

                                                      Returns
                                                      Example
                                                      import mlflow
                                                      tags = {
                                                          "engineering": "ML Platform",
                                                          "release.candidate": "RC1",
                                                          "release.version": "2.2.0",
                                                      # Set a batch of tags
                                                      with mlflow.start_run():
                                                          mlflow.set_tags(tags)
                                                      mlflow.set_tracking_uri(
  •