添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
std::string keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ initial_width | 0 | Preprocess input image by initial resizing to a specific width.}"
"{ initial_height | 0 | Preprocess input image by initial resizing to a specific height.}"
"{ std | 0.0 0.0 0.0 | Preprocess input image by dividing on a standard deviation.}"
"{ crop | false | Preprocess input image by center cropping.}"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ needSoftmax | false | Use Softmax to post-process the output of the net.}"
"{ classes | | Optional path to a text file with names of classes. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation, "
"4: VKCOM, "
"5: CUDA, "
"6: WebNN }"
"{ target | 0 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU, "
"4: Vulkan, "
"6: CUDA, "
"7: CUDA fp16 (half-float preprocess) }" ;
using namespace cv ;
using namespace dnn;
std::vector<std::string> classes;
int main ( int argc, char ** argv)
CommandLineParser parser(argc, argv, keys);
const std::string modelName = parser. get < String >( "@alias" );
const std::string zooFile = parser. get < String >( "zoo" );
keys += genPreprocArguments(modelName, zooFile);
parser = CommandLineParser (argc, argv, keys);
parser. about ( "Use this script to run classification deep learning networks using OpenCV." );
if (argc == 1 || parser. has ( "help" ))
parser. printMessage ();
return 0;
int rszWidth = parser. get < int >( "initial_width" );
int rszHeight = parser. get < int >( "initial_height" );
float scale = parser. get < float >( "scale" );
Scalar mean = parser. get < Scalar >( "mean" );
Scalar std = parser. get < Scalar >( "std" );
bool swapRB = parser. get < bool >( "rgb" );
bool crop = parser. get < bool >( "crop" );
int inpWidth = parser. get < int >( "width" );
int inpHeight = parser. get < int >( "height" );
String model = findFile(parser. get < String >( "model" ));
String config = findFile(parser. get < String >( "config" ));
String framework = parser. get < String >( "framework" );
int backendId = parser. get < int >( "backend" );
int targetId = parser. get < int >( "target" );
bool needSoftmax = parser. get < bool >( "needSoftmax" );
std::cout<< "mean: " <<mean<<std::endl;
std::cout<< "std: " << std <<std::endl;
// Open file with classes names.
if (parser. has ( "classes" ))
std::string file = parser. get < String >( "classes" );
std::ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error (Error::StsError, "File " + file + " not found" );
std::string line;
while (std::getline(ifs, line))
classes.push_back(line);
if (!parser. check ())
parser. printErrors ();
return 1;
CV_Assert (!model.empty());
Net net = readNet(model, config, framework);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
// Create a window
static const std::string kWinName = "Deep learning image classification in OpenCV" ;
namedWindow(kWinName, WINDOW_NORMAL);
if (parser. has ( "input" ))
cap. open (parser. get < String >( "input" ));
cap. open (0);
// Process frames.
Mat frame, blob;
while (waitKey(1) < 0)
cap >> frame;
if (frame.empty())
waitKey();
break ;
if (rszWidth != 0 && rszHeight != 0)
resize(frame, frame, Size (rszWidth, rszHeight));
blobFromImage(frame, blob, scale, Size (inpWidth, inpHeight), mean, swapRB, crop);
// Check std values.
if ( std .val[0] != 0.0 && std .val[1] != 0.0 && std .val[2] != 0.0)
// Divide blob by std.
divide(blob, std , blob);
net.setInput(blob);
// double t_sum = 0.0;
// double t;
int classId;
double confidence;
cv::TickMeter timeRecorder;
timeRecorder. reset ();
Mat prob = net.forward();
double t1;
timeRecorder. start ();
prob = net.forward();
timeRecorder. stop ();
t1 = timeRecorder. getTimeMilli ();
timeRecorder. reset ();
for ( int i = 0; i < 200; i++) {
timeRecorder. start ();
prob = net.forward();
timeRecorder. stop ();
Point classIdPoint;
minMaxLoc(prob. reshape (1, 1), 0, &confidence, 0, &classIdPoint);
classId = classIdPoint. x ;
// Put efficiency information.
// std::vector<double> layersTimes;
// double freq = getTickFrequency() / 1000;
// t = net.getPerfProfile(layersTimes) / freq;
// t_sum += t;
if (needSoftmax == true )
float maxProb = 0.0;
float sum = 0.0;
Mat softmaxProb;
maxProb = *std::max_element(prob. begin < float >(), prob. end < float >());
cv::exp(prob-maxProb, softmaxProb);
sum = (float) cv::sum (softmaxProb)[0];
softmaxProb /= sum;
Point classIdPoint;
minMaxLoc(softmaxProb. reshape (1, 1), 0, &confidence, 0, &classIdPoint);
classId = classIdPoint. x ;
std::string label = format( "Inference time of 1 round: %.2f ms" , t1);
std::string label2 = format( "Average time of 200 rounds: %.2f ms" , timeRecorder. getTimeMilli ()/200);
putText(frame, label, Point (0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar (0, 255, 0));
putText(frame, label2, Point (0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar (0, 255, 0));
// Print predicted class.
label = format( "%s: %.4f" , (classes.empty() ? format( "Class #%d" , classId).c_str() :
classes[classId].c_str()),
confidence);
putText(frame, label, Point (0, 55), FONT_HERSHEY_SIMPLEX, 0.5, Scalar (0, 255, 0));
imshow(kWinName, frame);
return 0;
Designed for command line parsing.
Definition utility.hpp:890
T get(const String &name, bool space_delete=true) const
Access arguments by name.
Definition utility.hpp:956
void about(const String &message)
Set the about message.
void printErrors() const
Print list of errors occurred.
void printMessage() const
Print help message.
bool has(const String &name) const
Check if field was provided in the command line.
bool check() const
Check for parsing errors.
n-dimensional dense array class
Definition mat.hpp:828
Mat reshape(int cn, int rows=0) const
Changes the shape and/or the number of channels of a 2D matrix without copying the data.
MatIterator_< _Tp > end()
Returns the matrix iterator and sets it to the after-last matrix element.
MatIterator_< _Tp > begin()
Returns the matrix iterator and sets it to the first matrix element.
_Tp x
x coordinate of the point
Definition types.hpp:201
Template class for specifying the size of an image or rectangle.
Definition types.hpp:335
a Class to measure passing time.
Definition utility.hpp:326
void start()
starts counting ticks.
Definition utility.hpp:335
void stop()
stops counting ticks.
Definition utility.hpp:341
void reset()
resets internal values.
Definition utility.hpp:430
double getTimeMilli() const
returns passed time in milliseconds.
Definition utility.hpp:365
Class for video capturing from video files, image sequences or cameras.
Definition videoio.hpp:735
virtual bool open(const String &filename, int apiPreference=CAP_ANY)
Opens a video file or a capturing device or an IP video stream for video capturing.
Scalar sum(InputArray src)
Calculates the sum of array elements.
std::string String
Definition cvstd.hpp:151
#define CV_Error(code, msg)
Call the error handler.
Definition base.hpp:335
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails.
Definition base.hpp:359
int main(int argc, char *argv[])
Definition highgui_qt.cpp:3
Definition core.hpp:107
STL namespace.