Model description
LLaMA is a family of open-source large language models from Meta AI that perform as well as closed-source models. This is the 13B parameter version, available for both inference and fine-tuning. Fine-tuning for this model is done with LoRA.
Note: LLaMA is for research purposes only. It is not intended for commercial use.
Fine-tuning
If you have access to the training beta
, you can fine-tune this model.
Here’s an example using
replicate-python
:
training = replicate.trainings.create(
version="replicate/llama-13b-lora:455d66312a66299fba685548fe24f66880f093007b927abd19f4356295f8577c",
input={
"train_data": "https://storage.googleapis.com/dan-scratch-public/fine-tuning/70k_samples.jsonl",
destination="my-username/my-model"
Training takes these input parameters:
train_data
(required): URL to a file where each row is a JSON record in the format {"prompt": ..., "completion": ...}
. Can be JSONL or one JSON list.
train_batch_size
(optional, default=1): Train batch size. For llama-13B, we recommend keeping the batch size small and increasing gradient_accumulation_steps
gradient_accumulation_steps
(optional, default=8): Number of training steps (each of train_batch_size
) to store gradients for before performing an optimizer step.
learning_rate
(optional, default=2e-5): Learning rate!
num_train_epochs
(optional, default=1): Number of epochs (iterations over the entire training dataset) to train for.
warmup_ratio
(optional, default=0.03): Percentage of all training steps used for a linear LR warmup.
logging_steps
(optional, default=1): Prints loss & other logging info every logging_steps
.
max_steps
(optional, default=-1): Maximum number of training steps. Unlimited if max_steps=-1
.
lora_rank
(optional, default=8): Rank of the LoRA matrices.
lora_alpha
(optional, default=16): Alpha parameter for scaling LoRA weights; weights are scaled by alpha/rank
lora_dropout
(optional, default=0.1): Dropout for LoRA training.
lora_target_modules
(optional, default=’q_proj,v_proj’): Comma-separated list of target modules to fine-tune with LoRA.
Citation
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}