添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • 本文从零介绍有限元方法,包括每一步的数学推导,同时附程序开发指南。可以方便新手入门。

    偏微分方程

    \nabla^2u(x, y) = 0 \ \ \ \ in \ \ \Omega \ \ \ (1) \\ u = g \ \ \ \ \ \ \ \ \ \ on \ \ \ \Gamma_u \ \ \ (2) \\ q = \frac{\partial u}{\partial \vec{n}} = 0 \ \ \ on \ \ \ \Gamma_q \ \ \ (3) \\ 2 u ( x , y ) = 0 in Ω ( 1 ) u = g o n Γ u ( 2 ) q = n u = 0 o n Γ q ( 3 )
    a). 其中 \int_{\Omega} \nabla u \cdot \nabla vds - \int_{\partial \Omega} (\nabla u \cdot \mathbf{n})vdw= 0 \ \ \ \ \ \ \ (5) Ω u v d s Ω ( u n ) v d w = 0 ( 5 )
    \int_{\Omega} \nabla u \cdot \nabla vds - \int_{\Gamma_q} (\nabla u \cdot \mathbf{n})vdw - \int_{\Gamma_u} (\nabla u \cdot \mathbf{n})vdw= 0 \ \ \ \ \ \ \ (6) Ω u v d s Γ q ( u n ) v d w Γ u ( u n ) v d w = 0 ( 6 )
    因等式 (2) 我们可以选择最初的 \int_{\Omega} \nabla u \cdot \nabla vds - \int_{\Gamma_q} (\nabla u \cdot \mathbf{n})vdw = 0. \ \ \ \ \ \ \ (7) Ω u v d s Γ q ( u n ) v d w = 0. ( 7 )
    再将等式 (3) 带入到等式 (7) 中可以得到如下的最终弱形式:
    Then \ \ the \ \ weak \ \ formulation \ \ is \ \ to \ \ find \ \ u \in U \ \ such \ \ that T h e n t h e w e ak f or m u l a t i o n i s t o f in d u U s u c h t ha t
    U := \{u \in C^0(\Omega) | u = g, \quad (x,y) \in \Gamma_u \} \ \ \ \ (9) \\\ V := \{v \in C^0(\Omega) | v = 0, \quad (x,y) \in \Gamma_u \} \ \ \ \ (10) U := { u C 0 ( Ω ) u = g , ( x , y ) Γ u } ( 9 ) V := { v C 0 ( Ω ) v = 0 , ( x , y ) Γ u } ( 10 )

    The Galerkin formulation : find V_h := \{ u_h \in C(T_h) | \quad u_h | _{E_i} \in P_1 \quad \forall E_i \in T_h \} \ \ \ (12) \\\ \\\ U_h^{\Gamma} := \{ \psi_h \in V_h | \quad \psi_h |_{\Gamma_u} = g \} \ \ \ (13) \\\ \\\ V_h^{\Gamma} := \{ \phi_h \in V_h | \quad \psi_h |_{\Gamma_u} = 0 \} \ \ \ (14) V h := { u h C ( T h ) u h E i P 1 E i T h } ( 12 ) U h Γ := { ψ h V h ψ h Γ u = g } ( 13 ) V h Γ := { ϕ h V h ψ h Γ u = 0 } ( 14 )
    Where \hat{\psi}_j(\hat{x}, \hat{y}) = a_j\hat{x} + b_j\hat{y} + c_j \ \ \ \ \ \ j = 1, 2, 3,\ \ \ \ \ (15) ψ ^ j ( x ^ , y ^ ) = a j x

  •