Hi Guys,
I am trying to run the trained model (for 2 classes) on a test data set. However, I get the following error when I try to do so:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 3, 480, 480) 0
_________________________________________________________________
model_1 (Model) [(None, 2, 30, 30), (None 937642
=================================================================
Total params: 937,642
Trainable params: 934,794
Non-trainable params: 2,848
2019-11-25 04:43:27,795 [INFO] iva.detectnet_v2.scripts.inference: Initialized model
2019-11-25 04:43:27,806 [INFO] iva.detectnet_v2.scripts.inference: Commencing inference
0it [00:00, ?it/s]
0%| | 0/64 [00:00<?, ?it/s]
2%|1 | 1/64 [00:00<00:12, 5.20it/s]
22%|##1 | 14/64 [00:00<00:06, 7.31it/s]
44%|####3 | 28/64 [00:00<00:03, 10.20it/s]
66%|######5 | 42/64 [00:00<00:01, 14.11it/s]
100%|##########| 64/64 [00:00<00:00, 95.82it/s]
1it [00:04, 4.37s/it]
Traceback (most recent call last):
File "/usr/local/bin/tlt-infer", line 10, in <module>
sys.exit(main())
File "./common/magnet_infer.py", line 35, in main
File "./detectnet_v2/scripts/inference.py", line 222, in main
File "./detectnet_v2/scripts/inference.py", line 180, in inference_wrapper_batch
File "./detectnet_v2/inferencer/tlt_inferencer.py", line 123, in infer_batch
File "./detectnet_v2/inferencer/base_inferencer.py", line 107, in input_preprocessing
ValueError: axes don't match array
Please find the contents of the clusterfile below:
"dbscan_criterion": "IOU",
"dbscan_eps": {
"person": 0.35,
"car": 0.25,
"default": 0.15
"dbscan_min_samples": {
"person": 0.05,
"car": 0.05,
"default": 0.0
"min_cov_to_cluster": {
"person": 0.005,
"car": 0.005,
"default": 0.005
"min_obj_height": {
"person": 4,
"car": 4,
"default": 2
"target_classes": ["person","car"],
"confidence_th": {
"person": 0.9,
"car": 0.9
"confidence_model": {
"person": { "kind": "aggregate_cov"},
"car": { "kind": "aggregate_cov"}
"output_map": {
"person": "person",
"car": "car"
"color": {
"person": "blue",
"car": "green",
"default": "black"
"postproc_classes": ["person", "car"],
"image_height": 480,
"image_width": 480,
"stride": 16
Please help me out.
Thanks
Hi Morganh,
Please find the command below:
!tlt-infer detectnet_v2 -i $USER_EXPERIMENT_DIR/data/testing/image_2 \
-o $USER_EXPERIMENT_DIR/tlt_infer_testing_oi \
-m $USER_EXPERIMENT_DIR/experiment_dir_retrain/weights/resnet10_detector_pruned_2classes.tlt \
-cp $SPECS_DIR/detectnet_v2_clusterfile_kitti_2classes.json \
-k $KEY \
--kitti_dump \
-lw 3 \
-g 0 \
-bs 64
I have observed that few images with the same resolution work while others do not. I am unable to understand.
Thanks.
Hi neophyte1,
We haven’t heard back from you in a couple weeks, so marking this topic is not an issue.
Please open a new forum issue when you are ready and we’ll pick it up there.
Hi Morganh,
Please find the command below:
!tlt-infer detectnet_v2 -i $USER_EXPERIMENT_DIR/data/testing/image_2 \
-o $USER_EXPERIMENT_DIR/tlt_infer_testing_oi \
-m $USER_EXPERIMENT_DIR/experiment_dir_retrain/weights/resnet10_detector_pruned_2classes.tlt \
-cp $SPECS_DIR/detectnet_v2_clusterfile_kitti_2classes.json \
-k $KEY \
--kitti_dump \
-lw 3 \
-g 0 \
-bs 64
I have observed that few images with the same resolution work while others do not. I am unable to understand.
Thanks.
I also experienced the same issue. It turns out, some of my images are BGR, and some are RGB. To make sure, you can just show all of your images inside your jupyter notebook.