王涛, 童英, 丁毅, 郭磊, 黄河, 范润龙, 王朝阳, 张颖慧, 曹光跃, 张建军. 2024. DDE-岩浆岩数据库初步构建与应用. 岩石学报, 40(3): 873-888. doi: 10.18654/1000-0569/2024.03.11
引用本文:
王涛, 童英, 丁毅, 郭磊, 黄河, 范润龙, 王朝阳, 张颖慧, 曹光跃, 张建军. 2024. DDE-岩浆岩数据库初步构建与应用. 岩石学报, 40(3): 873-888.
doi:
10.18654/1000-0569/2024.03.11
21世纪是大数据的时代, 数据、模型驱动下的科学研究新范式与知识发现成为当今科学领域的新态势。本文介绍了在"深时数字地球"(Deep-time Digital Earth, DDE)国际大科学计划框架下构建的DDE-岩浆岩数据库。该数据库以"数据+编图+研究"三位一体的建库思路, 基于岩浆岩知识体系, 构建了岩浆岩数据库, 包括后台服务(云端)、网站(Web端)和科研工作平台(桌面端)。数据主要来源于公开发表的文献、研究团队测试、实验室测试数据等, 涉及全球重要造山带、克拉通及部分海洋(大洋钻探数据)等。此外, 还设立了22个地域性、学科性专题数据库。数据类型为岩浆岩岩石类型、产状、空间位置等基本信息, 以及年代学、地球化学、(Sr-Nd-Hf-Pb-O)同位素及非传统(或新兴)同位素数据。与国际最常用的有关数据库相比, 本数据库具有以下优势: (1)"数-图-文"三位一体的设计思路, 拥有编图和研究平台; (2)以研究为导向, 组织构建了22个专题数据库, 更多一线专家参与数据库建设, 在某些地域和领域(如中亚、非传统同位素等)形成优势; (3)对数据都尽可能挖掘和补充了年龄、经纬度等时空信息; (4)创建了学科专家可以依据新的发展和需求及时调整数据库结构的技术与功能, 而不需要重新编程; (5)有强大的DDE平台支持, 为与国际有关数据库互联互通提供了有利条件。最后, 利用DDE-岩浆岩数据库的核心数据(年代学、同位素等), 对复杂大陆拼合过程、地壳生长、地球深部物质组成架构与演化等重大地球科学问题进行了探索并取得了一些进展, 说明该数据库将对推动数据驱动的岩浆岩研究具有重要意义。
"数-图-文"三位一体
Abstract:
The 21
st
century is the era of big data, and the new scientific research paradigm and knowledge discovery driven by data and models has become a new trend in scientific field. In this paper, we introduce the DDE-database of igneous rocks constructed under the framework of Deep-time Digital Earth (DDE), an international big science program. The database is built based on the knowledge system of petrology with the idea of 'data+mapping+research', and includes a backend service (Cloud), a website (Web) and a scientific research work platform (Desktop). The main data come from published literatures, our team's data, laboratory analyzed data and the interconnection of international databases, which cover important orogenic belts, cratons and part of the oceans (IODP data) on the earth. In addition, 22 thematic databases of regional and special fields have been set up. The data are also available on the website and the research platform. The data type of this database include rock types, occurrence, spatial information, geological background, geochronology, geochemistry, (Sr-Nd-Hf-Pb-O) isotopes and non-traditional isotopes. Compared with the most widely used databases in the world, this database has such advantages as follows: (1) the design concept is based on 'data-mapping-research', with a platform for mapping and research; (2) more thematic databases are constructed, which attracts more expert participates and creates an advantage in some regions and fields (e.g., Central Asia Orogenic Belt, emerging isotopes, etc.); (3) most primarily data sets are enriched with geochronological, as well as longitude and latitude, seamlessly integrated with geographic map polygons; (4) the researchers can adjust their database structures in time according to new developments and demands, without writing new codes; (5) the powerful DDE platform can provide favorable suppuration for the interconnection and cooperation with international relevant databases. Based on the core data (geochronology, isotopes, etc.) of the DDE-database, research progress has been made in study of major geoscientific issues, such as the complex process of continental assemblage, crustal growth, and the compositional architecture and evolution of the deep Earth.
Key words:
Magmatic rocks
Database
Research Platform
Data-mapping-research
Dhuime B, Hawkesworth CJ, Delavault H and Cawood PA. 2018. Rates of generation and destruction of the continental crust: Implications for continental growth. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132): 20170403 doi:
10.1098/rsta.2017.0403
Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE and Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125 doi:
10.1016/j.gr.2012.12.023
Wang CS, Hazen RM, Cheng QM, Stephenson MH, Zhou CH, Fox P, Shen SZ, Oberhänsli R, Hou ZQ, Ma XG, Feng ZQ, Fan JX, Ma C, Hu XM, Luo B, Wang JL and Schiffries CM. 2021. The Deep-Time Digital Earth program: Data-driven discovery in geosciences. National Science Review, 8(9): nwab027 doi:
10.1093/nsr/nwab027
Wang CY, Wang T, Lin SF, Cees van Staal. 2022. Geochemical mapping of the Late- Devonian Ackley batholith in the Appalachian orogenic belt (Newfoundland) and its control on mineralization of critical metals. Acta Geologica Sinica, 96(2): 517-532 (in Chinese with English abstract). doi:
10.1111/1755-6724.14728
Wang T, Tong Y, Xiao WJ, Guo L, Windley BF, Donskaya T, Li S, Tserendash N and Zhang JJ. 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data. National Science Review, 9(5): nwab210 doi:
10.1093/nsr/nwab210
Wang T, Huang H, Yang LQ, Zheng YC, Xu B, Sun J, Hou T, Bao XW, Zhang JJ, Zhu XS, Fan RL, Yin JY, Su YP and Hou ZQ. 2022. The methodological framework for deciphering 3-demensional material architecture of the lithosphere. Acta Geologica Sinica, 96(10): 3589-3618 (in Chinese with English abstract) doi:
10.3969/j.issn.0001-5717.2022.10.018
Zhou YZ, Chen S, Zhang Q, Xiao F, Wang SG, Liu YP and Jiao ST. 2018. Advances and prospects of big data and mathematical geoscience. Acta Petrologica Sinica, 34(2): 255-263 (in Chinese with English abstract)
http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201802001.htm
周永章, 陈烁, 张旗, 肖凡, 王树功, 刘艳鹏, 焦守涛. 2018. 大数据与数学地球科学研究进展——大数据与数学地球科学专题代序. 岩石学报, 34(2): 255-263
http://www.ysxb.ac.cn/article/id/5ff2d601bfedb51e1a6ae36d
Figure 3.
Comparison of geochemistry of magmatic rocks from the Central Asia and Appalachian orogenic belts
Figure 4.
Comparison of Nd isotope geochemistry of magmatic rocks from the Central Asia and the Appalachian orogenic belts(The data from the databases in the DDE-OnePetrology)
Figure 5.
The "clockwise" geochemical evolution trajectory of the magmatic rocks in the main Silurian-Devonian orogeny of in the Appalachian orogen, revealing the tectonic environment evolution from syn-subduction accretion to post-accretion
Figure 6.
Chemical mapping and section of the Akeley granitic plutons of the Newfoundland Appalachian orogenic belt (after
Wang
et al
., 2022
)
Figure 7.
Distribution of zircon ages of the magmatic rocks (granitoids) of the Central Asian orogenic system (after
Wang
et al
., 2022b
)
Figure 8.
Nd+Hf isotope joint mapping of magmatic rocks of the Central Asian Orogenic Belt reveal the three-dimensional lithospheric architecture and its four-dimensional evolution (after
Wang
et al
., 2023b
)
Figure 9.
Nd+Hf isotope joint mapping of magmatic rocks of the Central Asian Orogenic Belt reveal the lithospheric architecture and its controls on mineralization(after
Wang
et al
., 2023b
)
Figure 10.
ε
Nd
(
t
) contour maps of the typical eight orogens in the world, showing spatial variations of
ε
Nd
(
t
) values, distribution of Nd isotopic provinces and the distribution and areas of juvenile crustal domains (after
Wang
et al
., 2023c
)
Figure 11.
Classification and characteristics of orogens in terms of their compositional architecture (areal percent of juvenile compositions) and ages of orogens