添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
AWK Akka Dockerfile Docker命令 Docker环境 ELK ElasticSearch Elasticsearch Flume Git命令 Go HBase HDFS Hadoop Hadoop原理架构体系 Hive JVM Java Web,Socket,Python Jenkins环境 Kafka Kibana Linux命令 Logstash Mac MapReduce Maven配置 MongoDB MySQL Nginx Redis Shadowsocks Shell Spring Storm Zookeeper 其他

使用Spring的MongoTemplate如何执行自定义的mongo语句

基础的SpringMongoTemplate用法可以参考:

  • http://blog.csdn.net/cuiran/article/details/8287204
  • http://blog.csdn.net/xiaohulunb/article/details/27828381
  • 对GoodsInfo Collection按照name进行distinct查询

    1
    2
    3
    4
    5
    6
    7
    8
    String jsonSql = "{distinct:'GoodsInfo', key:'name'}";
    CommandResult commandResult = mongoTemplate.executeCommand(jsonSql);
    System.out.println();
    BasicDBList list = (BasicDBList)commandResult.get("values");
    for (int i = 0; i < list.size(); i ++) {
    System.out.println(list.get(i));
    }
    System.out.println();

    查询统计某一个时间段每个片区下的总用户数,新用户数,旧用户数,异常数

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    public Map<String, LandPushTypeCount> findTodayCountByAreaIds(Collection<String> areaIds) throws Exception {
    Map<String, LandPushTypeCount> result = new HashMap<String, LandPushTypeCount>();
    Criteria criteria = Criteria.where("todayDate").is(DateUtil.parseDate2YMD(new Date())).andOperator(Criteria.where("areaId").in(areaIds));
    String initDocument = "{codeCount:0, newCount:0, oldCount:0, errorCount:0}";
    String reduceFunction = "function (doc, prev) { prev.codeCount += doc.codeCount; prev.newCount += doc.newCount; prev.oldCount += doc.oldCount; prev.errorCount += doc.errorCount; }";
    GroupBy groupBy = GroupBy.key("areaId").initialDocument(initDocument).reduceFunction(reduceFunction);
    GroupByResults<LandPushTypeCount> groupByResult = landPushTypeCountDao.getMongoTemplate().group(criteria, "LandPushTypeCount", groupBy, LandPushTypeCount.class);
    BasicDBList list = (BasicDBList) groupByResult.getRawResults().get("retval");
    for (int i = 0; i < list.size(); i ++) {
    LandPushTypeCount landPushTypeCountBean = new LandPushTypeCount();
    BasicDBObject obj = (BasicDBObject)list.get(i);
    System.out.println("片区:" + obj.get("areaId")
    + "总数量:" + obj.get("codeCount")
    + "新用户数量:" + obj.get("newCount")
    + "旧用户数量:" + obj.get("oldCount")
    + "异常数量:" + obj.get("errorCount")
    );
    landPushTypeCountBean.setCodeCount(((Double) obj.get("codeCount")).intValue());
    landPushTypeCountBean.setNewCount(((Double) obj.get("newCount")).intValue());
    landPushTypeCountBean.setOldCount(((Double) obj.get("oldCount")).intValue());
    landPushTypeCountBean.setErrorCount(((Double) obj.get("errorCount")).intValue());
    result.put((String) obj.get("areaId"), landPushTypeCountBean);
    }
    return result;
    }
    // 相当于mongo语句如下
    db.runCommand(
    {
      "group":
      {
        "ns":"LandPushTypeCount",
        "key":{"areaId":true},
        "initial":{codeCount:0, newCount:0, oldCount:0, errorCount:0},
        "$reduce":function(doc,prev)
        {
          prev.codeCount += doc.codeCount;
    prev.newCount += doc.newCount;
    prev.oldCount += doc.oldCount;
    prev.errorCount += doc.errorCount;
        },
        "condition":{"todayDate":"2015-10-29", "areaId":{$in:["", "330100", "110000"]}}
      }
    }
    );

    查询top100回复数的帖子

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    public void top100Postinfo() {
    long start = System.nanoTime();
    try {
    final long startTime = 1443628800000L;
    final long endTime = 1446436799000L;
    Query query = new Query();
    query.addCriteria(Criteria.where("createTS").gte(startTime).lte(endTime));
    query.addCriteria(Criteria.where("srcPostId").exists(true));
    query.addCriteria(Criteria.where("referInfo").exists(false));
    query.addCriteria(Criteria.where("dr").is(0));
    long count = postinfoDAO.getCount(query);
    System.out.println("count:" + count);
    final int filterCount = 100;
    DBObject result1 = postinfoDAO.getMongoTemplate().execute(Postinfo.class, new CollectionCallback<DBObject>() {
    @Override
    public DBObject doInCollection(DBCollection collection) throws MongoException, DataAccessException {
    // match匹配条件
    Map matchMap = new HashMap();
    matchMap.put("createTS", new BasicDBObject("$gt", startTime).append("$lt", endTime));
    matchMap.put("referInfo", new BasicDBObject("$exists", false));
    matchMap.put("srcPostId", new BasicDBObject("$exists", true));
    matchMap.put("dr", 0);
    DBObject matchOption = new BasicDBObject("$match", matchMap);
    // group条件
    Map groupMap = new HashMap();
    groupMap.put("_id", "$srcPostId");
    groupMap.put("total", new BasicDBObject("$sum", 1));
    BasicDBObject groupOption = new BasicDBObject("$group", groupMap);
    // sort条件
    Map sortMap = new HashMap();
    sortMap.put("total", -1);
    BasicDBObject sortOption = new BasicDBObject("$sort", sortMap);
    // limit条件
    BasicDBObject limitOption = new BasicDBObject("$limit", filterCount);
    // 获取结果集
    AggregationOutput output = collection.aggregate(matchOption, groupOption, sortOption, limitOption);
    Iterator<DBObject> iterator = output.results().iterator();
    DBObject result = null;
    List<Map<String, String>> resultList = new ArrayList<Map<String, String>>();
    while (iterator.hasNext()) {
    result = iterator.next();
    String id = (String) result.get("_id");
    Integer total = (Integer) result.get("total");
    System.out.println("id:" + id);
    System.out.println("total:" + total);
    Map<String, String> resultMap = new HashMap<>();
    resultMap.put("id", id);
    resultMap.put("total", String.valueOf(total));
    resultList.add(resultMap);
    }
    exportExcel(resultList);
    return result;
    }
    });
    } catch (Exception e) {
    e.printStackTrace();
    }
    long finish = System.nanoTime();
    System.out.println(TimeUnit.NANOSECONDS.toSeconds(finish - start) + ":秒");
    System.out.println("top20PercentPostinfo 执行完毕");
    }
    // 相当于mongo语句如下
    db.Postinfo.aggregate([
    { $match: { "createTS":{"$gt":1443628800000, "$lt":1446436799000}, "srcPostId":{$exists:true}, "referInfo":{$exists:false}, "dr":0 } },
    { $limit: 1 },
    { $group: { _id: "$srcPostId", total: { $sum: 1 } } },
    { $sort: { total: -1 } }
    ]);

    参考文章:

  • http://blog.csdn.net/ruishenh/article/details/12842331
  • http://www.360doc.com/content/13/0524/18/12127276_287814300.shtml
  • http://ask.csdn.net/questions/167950
  • http://147175882.iteye.com/blog/1565378
  • Mongo数据库链接

    1
    2
    3
    4
    5
    6
    7
    # mongo命令链接数据库
    ./mongo 127.0.0.1:27017 -u root -p 'root' --authenticationDatabase databasename
    参数说明:
    -u:指明数据库的用户名
    -p:指明数据库的密码
    --authenticationDatabase:指明授权的数据库

    Mongo增删改

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    # 根据查询条件批量更新
    db.GoodsInfo.update({"type":1}, {$set:{"name":"birdben"}}, false, true);
    # 删除指定条件的数据
    db.GoodsInfo.remove({goodsStatus: 1});
    # 查询修改删除
    db.GoodsInfo.findAndModify({
    query: {price: {$gte: 100}},
    sort: {price: -1},
    update: {$set: {name: 'birdben'}, $inc: {price: 10}},
    remove: true
    });
    db.runCommand({ findandmodify : "GoodsInfo",
    query: {price: {$gte: 25}},
    sort: {price: -1},
    update: {$set: {name: 'birdben'}, $inc: {price: 10}},
    remove: true
    });

    Mongo查询

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    # 查询指定列(只查看name、price数据)
    db.GoodsInfo.find({"_id":"123456"}, {"name":1, price: 1}}).pretty();
    # 当然name也可以用true或false,当用ture的情况下河name:1效果一样,如果用false就是排除name,显示name以外的列信息。
    # 区间查询
    db.GoodsInfo.find({price: {$gte: 100, $lte: 200}});
    # like模糊查询,name中包含mongo的数据
    db.GoodsInfo.find({name: /mongo/});
    # like模糊查询,以mongo开头的数据
    db.GoodsInfo.find({name: /^mongo/});
    # or查询
    db.GoodsInfo.find({$or: [{price: 100}, {price: 200}]});
    # exists查询
    db.GoodsInfo.find({price: {$exists: true}});
    # 查询exists的个数
    db.GoodsInfo.find({price: {$exists: true}}).count();

    distinct用法

    1
    2
    3
    4
    5
    6
    7
    8
    db.GoodsInfo.distinct("name");
    # 对distinct结果进行筛选(下面两种方式效果是一样的)
    db.GoodsInfo.distinct("cityId", {"cityId":"330100"});
    db.runCommand({"distinct":"GoodsInfo","key":"cityId"});
    # 对distinct结果只查询数量,而且带过滤条件
    db.runCommand({"distinct":"GoodsInfo","key":"cityId","query":{"cityId":"330100"}}).values.length;

    查询子文档

    1
    2
    3
    4
    5
    6
    7
    8
    # 查询某个键
    db.GoodsInfo.find({"array.key":"value"});
    # 查询多个键
    db.GoodsInfo.find({"$elemMatch":{"array.key1":"value","array.key2":"value"}})
    # 查询未知个键
    db.GoodsInfo.find({"$elemMatch":{"$in":{"array":"value"}});
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    # 查询数组。此时你可能会使用到$all、$size。
    db.tianyc04.find()
    { "_id" : 1, "fruit" : [ "apple", "banana", "peach" ] }
    { "_id" : 2, "fruit" : [ "apple", "orange", "peach" ] }
    { "_id" : 3, "fruit" : [ "orange", "banana", "peach" ] }
    # 通过全匹配,查询第一行
    db.tianyc04.find({fruit:["apple", "banana", "peach"]})
    { "_id" : 1, "fruit" : [ "apple", "banana", "peach" ] }
    # 如果将数组中的顺序颠倒,则第一行就匹配不上了。此时可以使用$all
    db.tianyc04.find({fruit:["apple", "peach", "banana"]})
    db.tianyc04.find({fruit:{$all:["apple", "peach", "banana"]}})
    { "_id" : 1, "fruit" : [ "apple", "banana", "peach" ] }
    #也可以只输入一个元素进行查询
    db.tianyc04.find({fruit:'apple'})
    { "_id" : 1, "fruit" : [ "apple", "banana", "peach" ] }
    { "_id" : 2, "fruit" : [ "apple", "orange", "peach" ] }
    # 如果这个元素变成了数组,mongo就会进行精确匹配。此时你可能需要使用$all进行模糊匹配:
    db.tianyc04.find({fruit:['apple']})
    db.tianyc04.find({fruit:{$all:['apple']}})
    { "_id" : 1, "fruit" : [ "apple", "banana", "peach" ] }
    { "_id" : 2, "fruit" : [ "apple", "orange", "peach" ] }
    # 还可以按照数组中指定位置的元素进行查询,注意数组下标的起始编号是0。
    db.tianyc04.find({'fruit.1':'orange'})
    { "_id" : 2, "fruit" : [ "apple", "orange", "peach" ] }
    # 可以按照数组长度进行查询,只查询数组长度为x的文档。
    db.tianyc04.find({fruit:{$size:3}})
    { "_id" : 1, "fruit" : [ "apple", "banana", "peach" ] }
    { "_id" : 2, "fruit" : [ "apple", "orange", "peach" ] }
    { "_id" : 3, "fruit" : [ "orange", "banana", "peach" ] }
    # 如果数组中存储的不是简单的字符串,可以使用$elemMatch查询,但是$elemMatch的局限性是只能返回数组中的第一个匹配记录。
    db.tianyc05.find()
    { "_id" : 1, "fruit" : [ {"id":1, "name":"apple"}, {"id":2, "name":"banana"}, {"id":3, "name":"peach"} ] }
    { "_id" : 2, "fruit" : [ {"id":1, "name":"apple"}, {"id":4, "name":"orange"}, {"id":3, "name":"peach"} ] }
    { "_id" : 3, "fruit" : [ {"id":4, "name":"orange"}, {"id":2, "name":"banana"}, {"id":3, "name":"peach"} ] }
    db.tianyc05.find({fruit:{$elemMatch:{id:2}}});
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    # 分组查询某一时间段,按照主贴分组,统计每个主贴的回复数量
    db.Postinfo.aggregate([
    { $match: { "createTime":{"$gt":1443628800000, "$lt":1446436799000}, "srcPostId":{$exists:true} } },
    { $group: { _id: "$srcPostId", total: { $sum: 1 } } },
    { $sort: { total: -1 } }
    ]);
    # 按照被拒绝的原因进行统计,每种原因的数量,并且筛选结果数量要大于等于5
    db.ReviewRecord.aggregate([
    { $group: { _id: "$rejectReason", count: { $sum: 1 } } },
    { $sort: { count: -1 } },
    { $limit: 10},
    { $match: { count: { $gte: 5 } } }
    ]);
    # 分组之后,在进行数量的统计,统计分组后的数量大于等于5的数量有多少
    db.ReviewRecord.aggregate( [
    {
    $group: {
    _id: {
    rejectReason: "$rejectReason"
    },
    count: { $sum: 1 }
    }
    },
    { $match: { count: { $gte: 5 } } },
    {
    $group: {
    _id: null,
    count: { $sum: 1 }
    }
    }
    ] );
    # 类似SQL:
    SELECT COUNT(*) FROM (
    SELECT rejectReason, count
    FROM ReviewRecord
    GROUP BY rejectReason
    );
    # 复杂的统计计算,统计每个城市的2015-10-29的总用户数,新用户数,老用户数,异常用户数
    db.runCommand(
    {
      "group":
      {
        "ns":"LandPushTypeCount",
        "key":{"cityId":true},
        "initial":{codeCount:0, newCount:0, oldCount:0, errorCount:0},
        "$reduce":function(doc,prev)
        {
    prev.totalCount++;
    if(doc.isNew == 0) {
    prev.newCount++;
    } else {
          prev.oldCount++;
    }
    if(doc.isOldEquipMement == 1) {
          prev.errorCount++;
    }
        },
        "condition":{"date":"2015-10-29", "cityId":{$in:["110000", "330100"]}}
      }
    }
    );

    Mongo导入/导出

    单表导入导出

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    # import/export命令
    $ ./mongoimport -d databasename -c GoodsInfo --file GoodsInfo.dat -h 127.0.0.1 --port 27017 -u 'root' -p 'root'
    $ ./mongoexport -d databasename -c GoodsInfo -o GoodsInfo.dat -h 127.0.0.1 --port 27017 -u 'root' -p 'root'
    参数说明:
    -h:指明数据库宿主机的IP
    -u:指明数据库的用户名
    -p:指明数据库的密码
    -d:指明数据库的名字
    -c:指明collection的名字
    -f:指明到要导出的文件名
    # dump/restore命令
    $ ./mongorestore --host 127.0.0.1 --port 27017 -u root -p root --authenticationDatabase databasename -d databasename /Users/ben/Downloads/mongodb_bak/GoodsInfo.bson
    $ ./mongodump --host 127.0.0.1 --port 27017 -u root -p root --authenticationDatabase databasename -d databasename -o /Users/ben/Downloads/mongodb_bak
    参数说明:
    -h:指明数据库宿主机的IP
    -u:指明数据库的用户名
    -p:指明数据库的密码
    -d:指明数据库的名字
    -c:指明collection的名字
    -o:指明到要导出的文件名
    -q:指明导出数据的过滤条件

    参考文章:

  • http://www.cnblogs.com/cswuyg/p/4595799.html
  • http://www.open-open.com/lib/view/open1392709240428.html
  • http://docs.mongoing.com/manual-zh/core/single-purpose-aggregation.html
  • http://docs.mongoing.com/manual-zh/reference/sql-aggregation-comparison.html
  •