You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
By clicking “Sign up for GitHub”, you agree to our
terms of service
and
privacy statement
. We’ll occasionally send you account related emails.
Already on GitHub?
Sign in
to your account
背景:9千万个点,20亿边,分布式训练后(1ps + 20worker)得到cpkt模型,然后进行embedding表导出,执行如何命令:
python -m tf_euler --data_dir hdfs://path/data --model_dir model --max_id 90000000 --feature_idx 0 --feature_dim 1 --model graphsage --mode save_embedding
由于save_embedding不像train那样实现分布式计算,所以执行上面命令后会加载所有数据到单台机器内存后,导致内存不足,从而无法导出embedding表。所以,请问对于大规模的图,怎么导出模型训练后对应的embedding表?
@yangsiran