![]() |
怕老婆的皮带 · rc-tree-select - npm· 昨天 · |
![]() |
知识渊博的热带鱼 · 这才是 SpringBoot ...· 23 小时前 · |
![]() |
笑点低的肉夹馍 · hive解析json嵌套数组_mob64ca ...· 1小时前 · |
![]() |
不拘小节的爆米花 · JavaScriptSerializer.D ...· 1小时前 · |
![]() |
憨厚的黄豆 · 从输入数据自动推断模式 | ...· 1小时前 · |
![]() |
朝气蓬勃的面包 · 2024杭州高中排名变动,一图看懂新格局!_ ...· 6 月前 · |
![]() |
腹黑的企鹅 · 启功书法最大弱点是不宽博 过于强调技术性 ...· 7 月前 · |
![]() |
虚心的牛肉面 · useState设置器不更新其状态的值_us ...· 8 月前 · |
![]() |
曾深爱过的沙滩裤 · 细说为什么隆多2个冠军,而保罗至今无冠-NB ...· 9 月前 · |
![]() |
一身肌肉的麦片 · 從 C 轉換為 SQL - SQL ...· 10 月前 · |
Main data type enumeration.
This enumeration provides a quick way to interrogate the category of a DataType instance.
Values:
enumerator NA #A NULL type having no physical storage.
enumerator DICTIONARY #Dictionary-encoded type, also called “categorical” or “factor” in other programming languages.
Holds the dictionary value type but not the dictionary itself, which is part of the ArrayData struct
class DataType : public std :: enable_shared_from_this < DataType > , public arrow :: detail :: Fingerprintable , public arrow :: util :: EqualityComparable < DataType > #Base class for all data types.
Data types in this library are all logical . They can be expressed as either a primitive physical type (bytes or bits of some fixed size), a nested type consisting of other data types, or another data type (e.g. a timestamp encoded as an int64).
Simple datatypes may be entirely described by their Type::type id, but complex datatypes are usually parametric.
Subclassed by arrow::BaseBinaryType, arrow::BinaryViewType , arrow::ExtensionType , arrow::FixedWidthType, arrow::NestedType, arrow::NullType
Public Functions
bool Equals ( const DataType & other , bool check_metadata = false ) const #Return whether the types are equal.
Types that are logically convertible from one to another (e.g. List<UInt8> and Binary) are NOT equal.
bool Equals ( const std :: shared_ptr < DataType > & other , bool check_metadata = false ) const #Return whether the types are equal.
virtual std :: string name ( ) const = 0 #A string name of the type, omitting any child fields.
0.7.0
virtual DataTypeLayout layout ( ) const = 0 #Return the data type layout.
Children are not included.
Experimental API
inline virtual int32_t byte_width ( ) const #Returns the type’s fixed byte width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
These functions are recommended for creating data types. They may return new objects or existing singletons, depending on the type requested.
const std :: shared_ptr < DataType > & null ( ) #Return a NullType instance.
std :: shared_ptr < DataType > decimal ( int32_t precision , int32_t scale ) #Create a DecimalType instance depending on the precision.
If the precision is greater than 38, a Decimal256Type is returned, otherwise a Decimal128Type .
Deprecated: prefer
smallest_decimal
instead.
Create a the smallest DecimalType instance depending on precision.
Given the requested precision and scale, the smallest DecimalType which is able to represent that precision will be returned. As different bit-widths for decimal types are added, the concrete data type returned here can potentially change accordingly.
std :: shared_ptr < DataType > map ( std :: shared_ptr < DataType > key_type , std :: shared_ptr < DataType > item_type , bool keys_sorted = false ) #Create a MapType instance from its key and value DataTypes.
std :: shared_ptr < DataType > map ( std :: shared_ptr < DataType > key_type , std :: shared_ptr < Field > item_field , bool keys_sorted = false ) #Create a MapType instance from its key DataType and value field.
The field override is provided to communicate nullability of the value.
std :: shared_ptr < DataType > fixed_size_list ( std :: shared_ptr < Field > value_type , int32_t list_size ) #Create a FixedSizeListType instance from its child Field type.
std :: shared_ptr < DataType > fixed_size_list ( std :: shared_ptr < DataType > value_type , int32_t list_size ) #Create a FixedSizeListType instance from its child DataType .
std :: shared_ptr < DataType > timestamp ( TimeUnit :: type unit , const std :: string & timezone ) #Create a TimestampType instance from its unit and timezone.
std :: shared_ptr < DataType > time32 ( TimeUnit :: type unit ) #Create a 32-bit time type instance.
Unit can be either SECOND or MILLI
std :: shared_ptr < DataType > time64 ( TimeUnit :: type unit ) #Create a 64-bit time type instance.
Unit can be either MICRO or NANO
std :: shared_ptr < DataType > struct_ ( std :: initializer_list < std :: pair < std :: string , std :: shared_ptr < DataType > > > fields ) #Create a StructType instance from (name, type) pairs.
std :: shared_ptr < DataType > run_end_encoded ( std :: shared_ptr < DataType > run_end_type , std :: shared_ptr < DataType > value_type ) #Create a RunEndEncodedType instance.
std :: shared_ptr < DataType > sparse_union ( FieldVector child_fields , std :: vector < int8_t > type_codes = { } ) #Create a SparseUnionType instance.
std :: shared_ptr < DataType > sparse_union ( const ArrayVector & children , std :: vector < std :: string > field_names = { } , std :: vector < int8_t > type_codes = { } ) #Create a SparseUnionType instance.
std :: shared_ptr < DataType > dense_union ( FieldVector child_fields , std :: vector < int8_t > type_codes = { } ) #Create a DenseUnionType instance.
std :: shared_ptr < DataType > dense_union ( const ArrayVector & children , std :: vector < std :: string > field_names = { } , std :: vector < int8_t > type_codes = { } ) #Create a DenseUnionType instance.
std :: shared_ptr < DataType > dictionary ( const std :: shared_ptr < DataType > & index_type , const std :: shared_ptr < DataType > & dict_type , bool ordered = false ) #Create a DictionaryType instance.
index_type – [in] the type of the dictionary indices (must be a signed integer)
dict_type – [in] the type of the values in the variable dictionary
ordered – [in] true if the order of the dictionary values has semantic meaning and should be preserved where possible
Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
class BooleanType : public arrow :: detail :: CTypeImpl < BooleanType , PrimitiveCType , Type :: BOOL , bool > #Concrete type class for boolean data.
Public Functions
inline virtual int bit_width ( ) const final #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
class UInt8Type : public arrow :: detail :: IntegerTypeImpl < UInt8Type , Type :: UINT8 , uint8_t > #Concrete type class for unsigned 8-bit integer data.
class Int8Type : public arrow :: detail :: IntegerTypeImpl < Int8Type , Type :: INT8 , int8_t > #Concrete type class for signed 8-bit integer data.
class UInt16Type : public arrow :: detail :: IntegerTypeImpl < UInt16Type , Type :: UINT16 , uint16_t > #Concrete type class for unsigned 16-bit integer data.
class Int16Type : public arrow :: detail :: IntegerTypeImpl < Int16Type , Type :: INT16 , int16_t > #Concrete type class for signed 16-bit integer data.
class UInt32Type : public arrow :: detail :: IntegerTypeImpl < UInt32Type , Type :: UINT32 , uint32_t > #Concrete type class for unsigned 32-bit integer data.
class Int32Type : public arrow :: detail :: IntegerTypeImpl < Int32Type , Type :: INT32 , int32_t > #Concrete type class for signed 32-bit integer data.
class UInt64Type : public arrow :: detail :: IntegerTypeImpl < UInt64Type , Type :: UINT64 , uint64_t > #Concrete type class for unsigned 64-bit integer data.
class Int64Type : public arrow :: detail :: IntegerTypeImpl < Int64Type , Type :: INT64 , int64_t > #Concrete type class for signed 64-bit integer data.
class HalfFloatType : public arrow :: detail :: CTypeImpl < HalfFloatType , FloatingPointType , Type :: HALF_FLOAT , uint16_t > #Concrete type class for 16-bit floating-point data.
class FloatType : public arrow :: detail :: CTypeImpl < FloatType , FloatingPointType , Type :: FLOAT , float > #Concrete type class for 32-bit floating-point data (C “float”)
class DoubleType : public arrow :: detail :: CTypeImpl < DoubleType , FloatingPointType , Type :: DOUBLE , double > #Concrete type class for 64-bit floating-point data (C “double”)
#include <arrow/type.h>Base type class for (fixed-size) decimal data.
Subclassed by arrow::Decimal128Type , arrow::Decimal256Type , arrow::Decimal32Type , arrow::Decimal64Type
Public Static Functions
static Result < std :: shared_ptr < DataType > > Make ( Type :: type type_id , int32_t precision , int32_t scale ) #Constructs concrete decimal types.
static int32_t DecimalSize ( int32_t precision ) #Returns the number of bytes needed for precision.
precision must be >= 1
#include <arrow/type.h>Concrete type class for 32-bit decimal data.
Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative).
As an example,
Decimal32Type(7,
3)
can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 32-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567.
Decimal32Type has a maximum precision of 9 significant digits (also available as Decimal32Type::kMaxPrecision). If higher precision is needed, consider using Decimal64Type , Decimal128Type or Decimal256Type .
Public Functions
explicit Decimal32Type ( int32_t precision , int32_t scale ) #Decimal32Type constructor that aborts on invalid input.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
static Result < std :: shared_ptr < DataType > > Make ( int32_t precision , int32_t scale ) #Decimal32Type constructor that returns an error on invalid input.
#include <arrow/type.h>Concrete type class for 64-bit decimal data.
Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative).
As an example,
Decimal64Type(7,
3)
can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 64-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567.
Decimal64Type has a maximum precision of 18 significant digits (also available as Decimal64Type::kMaxPrecision). If higher precision is needed, consider using Decimal128Type or Decimal256Type .
Public Functions
explicit Decimal64Type ( int32_t precision , int32_t scale ) #Decimal32Type constructor that aborts on invalid input.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
static Result < std :: shared_ptr < DataType > > Make ( int32_t precision , int32_t scale ) #Decimal32Type constructor that returns an error on invalid input.
#include <arrow/type.h>Concrete type class for 128-bit decimal data.
Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative).
As an example,
Decimal128Type(7,
3)
can exactly represent the numbers 1234.567 and -1234.567 (encoded internally as the 128-bit integers 1234567 and -1234567, respectively), but neither 12345.67 nor 123.4567.
Decimal128Type has a maximum precision of 38 significant digits (also available as Decimal128Type::kMaxPrecision). If higher precision is needed, consider using Decimal256Type .
Public Functions
explicit Decimal128Type ( int32_t precision , int32_t scale ) #Decimal128Type constructor that aborts on invalid input.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
static Result < std :: shared_ptr < DataType > > Make ( int32_t precision , int32_t scale ) #Decimal128Type constructor that returns an error on invalid input.
#include <arrow/type.h>Concrete type class for 256-bit decimal data.
Arrow decimals are fixed-point decimal numbers encoded as a scaled integer. The precision is the number of significant digits that the decimal type can represent; the scale is the number of digits after the decimal point (note the scale can be negative).
Decimal256Type has a maximum precision of 76 significant digits. (also available as Decimal256Type::kMaxPrecision).
For most use cases, the maximum precision offered by Decimal128Type is sufficient, and it will result in a more compact and more efficient encoding.
Public Functions
explicit Decimal256Type ( int32_t precision , int32_t scale ) #Decimal256Type constructor that aborts on invalid input.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
static Result < std :: shared_ptr < DataType > > Make ( int32_t precision , int32_t scale ) #Decimal256Type constructor that returns an error on invalid input.
#include <arrow/type.h>Base type for all date and time types.
Subclassed by arrow::DateType , arrow::DurationType , arrow::IntervalType , arrow::TimeType , arrow::TimestampType
Public Functions
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
#include <arrow/type.h>Concrete type class for 32-bit date data (as number of days since UNIX epoch)
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for 64-bit date data (as number of milliseconds since UNIX epoch)
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
class TimeType : public arrow :: TemporalType , public arrow :: ParametricType #Base type class for time data.
Subclassed by arrow::Time32Type , arrow::Time64Type
#include <arrow/type.h>Concrete type class for 32-bit time data (as number of seconds or milliseconds since midnight)
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for 64-bit time data (as number of microseconds or nanoseconds since midnight)
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
class TimestampType : public arrow :: TemporalType , public arrow :: ParametricType #Concrete type class for datetime data (as number of seconds, milliseconds, microseconds or nanoseconds since UNIX epoch)
If supplied, the timezone string should take either the form (i) “Area/Location”, with values drawn from the names in the IANA Time Zone Database (such as “Europe/Zurich”); or (ii) “(+|-)HH:MM” indicating an absolute offset from GMT (such as “-08:00”). To indicate a native UTC timestamp, one of the strings “UTC”, “Etc/UTC” or “+00:00” should be used.
If any non-empty string is supplied as the timezone for a TimestampType , then the Arrow field containing that timestamp type (and by extension the column associated with such a field) is considered “timezone-aware”. The integer arrays that comprise a timezone-aware column must contain UTC normalized datetime values, regardless of the contents of their timezone string. More precisely, (i) the producer of a timezone-aware column must populate its constituent arrays with valid UTC values (performing offset conversions from non-UTC values if necessary); and (ii) the consumer of a timezone-aware column may assume that the column’s values are directly comparable (that is, with no offset adjustment required) to the values of any other timezone-aware column or to any other valid UTC datetime value (provided all values are expressed in the same units).
If a TimestampType is constructed without a timezone (or, equivalently, if the timezone supplied is an empty string) then the resulting Arrow field (column) is considered “timezone-naive”. The producer of a timezone-naive column may populate its constituent integer arrays with datetime values from any timezone; the consumer of a timezone-naive column should make no assumptions about the interoperability or comparability of the values of such a column with those of any other timestamp column or datetime value.
If a timezone-aware field contains a recognized timezone, its values may be localized to that locale upon display; the values of timezone-naive fields must always be displayed “as is”, with no localization performed on them.
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
class IntervalType : public arrow :: TemporalType , public arrow :: ParametricType #Subclassed by arrow::DayTimeIntervalType , arrow::MonthDayNanoIntervalType , arrow::MonthIntervalType
#include <arrow/type.h>Represents a number of months.
Type representing a number of months. Corresponds to YearMonth type in Schema.fbs (years are defined as 12 months).
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string ToString ( bool show_metadata = false ) const override #A string representation of the type, including any children.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string ToString ( bool show_metadata = false ) const override #A string representation of the type, including any children.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Represents a number of months, days and nanoseconds between two dates.
All fields are independent from one another.
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string ToString ( bool show_metadata = false ) const override #A string representation of the type, including any children.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
class DurationType : public arrow :: TemporalType , public arrow :: ParametricType #Represents an elapsed time without any relation to a calendar artifact.
Public Functions
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for variable-size binary data.
Subclassed by arrow::StringType
Public Functions
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for variable-size binary view data.
Subclassed by arrow::StringViewType
Public Functions
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Variable length string or binary with inline optimization for small values (12 bytes or fewer).
This is similar to std::string_view except limited in size to INT32_MAX and at least the first four bytes of the string are copied inline (accessible without pointer dereference). This inline prefix allows failing comparisons early. Furthermore when dealing with short strings the CPU cache working set is reduced since many can be inline.
This union supports two states:
Entirely inlined string data |-—|———–—| ^ ^ | | size in-line string data, zero padded
Reference into a buffer |-—|-—|-—|-—| ^ ^ ^ ^ | | | | size | | `——. prefix | | buffer index | offset in buffer
Adapted from TU Munich’s UmbraDB 1 , Velox, DuckDB.
Alignment to 64 bits enables an aligned load of the size and prefix into a single 64 bit integer, which is useful to the comparison fast path.
Public Functions
inline int32_t size ( ) constThe number of bytes viewed.
inline const uint8_t * inline_data ( ) const & #Return a pointer to the inline data of a view.
For inline views, this points to the entire data of the view. For other views, this points to the 4 byte prefix.
#include <arrow/type.h>Concrete type class for large variable-size binary data.
Subclassed by arrow::LargeStringType
Public Functions
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for large variable-size string data, utf8-encoded.
Public Functions
virtual std :: string ToString ( bool show_metadata = false ) const override #A string representation of the type, including any children.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
class FixedSizeBinaryType : public arrow :: FixedWidthType , public arrow :: ParametricType #Concrete type class for fixed-size binary data.
Subclassed by arrow::DecimalType
Public Functions
virtual std :: string ToString ( bool show_metadata = false ) const override #A string representation of the type, including any children.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual int byte_width ( ) const override #Returns the type’s fixed byte width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
#include <arrow/type.h>Concrete type class for list data.
List data is nested data where each value is a variable number of child items. Lists can be recursively nested, for example list(list(int32)).
Subclassed by arrow::MapType
Public Functions
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for large list data.
LargeListType is like ListType but with 64-bit rather than 32-bit offsets.
Public Functions
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for large list-view data.
LargeListViewType is like ListViewType but with 64-bit rather than 32-bit offsets and sizes.
Public Functions
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for map data.
Map data is nested data where each value is a variable number of key-item pairs. Its physical representation is the same as a list of
{key,
item}
structs.
Maps can be recursively nested, for example map(utf8, map(utf8, int32)).
Public Functions
virtual std :: string ToString ( bool show_metadata = false ) const override #A string representation of the type, including any children.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
Result < std :: shared_ptr < StructType > > AddField ( int i , const std :: shared_ptr < Field > & field ) const #Create a new StructType with field added at given index.
Result < std :: shared_ptr < StructType > > SetField ( int i , const std :: shared_ptr < Field > & field ) const #Create a new StructType by changing the field at given index.
#include <arrow/type.h>Base type class for union data.
Subclassed by arrow::DenseUnionType , arrow::SparseUnionType
Public Functions
virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline const std :: vector < int8_t > & type_codes ( ) const #The array of logical type ids.
For example, the first type in the union might be denoted by the id 5 (instead of 0).
#include <arrow/type.h>Concrete type class for sparse union data.
A sparse union is a nested type where each logical value is taken from a single child. A buffer of 8-bit type ids indicates which child a given logical value is to be taken from.
In a sparse union, each child array should have the same length as the union array, regardless of the actual number of union values that refer to it.
Note that, unlike most other types, unions don’t have a top-level validity bitmap.
Public Functions
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
#include <arrow/type.h>Concrete type class for dense union data.
A dense union is a nested type where each logical value is taken from a single child, at a specific offset. A buffer of 8-bit type ids indicates which child a given logical value is to be taken from, and a buffer of 32-bit offsets indicates at which physical position in the given child array the logical value is to be taken from.
Unlike a sparse union, a dense union allows encoding only the child array values which are actually referred to by the union array. This is counterbalanced by the additional footprint of the offsets buffer, and the additional indirection cost when looking up values.
Note that, unlike most other types, unions don’t have a top-level validity bitmap.
Public Functions
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
class DictionaryType : public arrow :: FixedWidthType #Dictionary-encoded value type with data-dependent dictionary.
Indices are represented by any integer types.
Public Functions
virtual std :: string ToString ( bool show_metadata = false ) const override #A string representation of the type, including any children.
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
class ExtensionType : public arrow :: DataType #The base class for custom / user-defined types.
Subclassed by arrow::extension::Bool8Type, arrow::extension::FixedShapeTensorType, arrow::extension::JsonExtensionType, arrow::extension::OpaqueType, arrow::extension::UuidType
Public Functions
inline const std :: shared_ptr < DataType > & storage_type ( ) const #The type of array used to represent this extension type’s data.
virtual DataTypeLayout layout ( ) const override #Return the data type layout.
Children are not included.
Experimental API
inline virtual std :: string name ( ) const override #A string name of the type, omitting any child fields.
0.7.0
inline virtual int32_t byte_width ( ) const override #Returns the type’s fixed byte width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
inline virtual int bit_width ( ) const override #Returns the type’s fixed bit width, if any.
Returns -1 for non-fixed-width types, and should only be used for subclasses of FixedWidthType
virtual std :: string extension_name ( ) const = 0 #Unique name of extension type used to identify type for serialization.
the string name of the extension
virtual bool ExtensionEquals ( const ExtensionType & other ) const = 0 #Determine if two instances of the same extension types are equal.
Invoked from ExtensionType::Equals
other – [in] the type to compare this type with
bool true if type instances are equal
virtual std :: shared_ptr < Array > MakeArray ( std :: shared_ptr < ArrayData > data ) const = 0 #Wrap built-in Array type in a user-defined ExtensionArray instance.
data – [in] the physical storage for the extension type
virtual Result < std :: shared_ptr < DataType > > Deserialize ( std :: shared_ptr < DataType > storage_type , const std :: string & serialized_data ) const = 0 #Create an instance of the ExtensionType given the actual storage type and the serialized representation.
storage_type – [in] the physical storage type of the extension
serialized_data – [in] the serialized representation produced by Serialize
Create a serialized representation of the extension type’s metadata.
The storage type will be handled automatically in IPC code paths
the serialized representation
static std :: shared_ptr < Array > WrapArray ( const std :: shared_ptr < DataType > & ext_type , const std :: shared_ptr < Array > & storage ) #Wrap the given storage array as an extension array.
static std :: shared_ptr < ChunkedArray > WrapArray ( const std :: shared_ptr < DataType > & ext_type , const std :: shared_ptr < ChunkedArray > & storage ) #Wrap the given chunked storage array as a chunked extension array.
std :: shared_ptr < Field > field ( std :: string name , std :: shared_ptr < DataType > type , bool nullable = true , std :: shared_ptr < const KeyValueMetadata > metadata = NULLPTR ) #Create a Field instance.
name – the field name
type – the field value type
nullable – whether the values are nullable, default true
metadata – any custom key-value metadata, default null
Create a Field instance with metadata.
The field will be assumed to be nullable.
name – the field name
type – the field value type
metadata – any custom key-value metadata
Create a Schema instance.
fields – the schema’s fields
metadata – any custom key-value metadata, default null
schema shared_ptr to Schema
std :: shared_ptr < Schema > schema ( std :: initializer_list < std :: pair < std :: string , std :: shared_ptr < DataType > > > fields , std :: shared_ptr < const KeyValueMetadata > metadata = NULLPTR ) #Create a Schema instance from (name, type) pairs.
The schema’s fields will all be nullable with no associated metadata.
fields – (name, type) pairs of the schema’s fields
metadata – any custom key-value metadata, default null
schema shared_ptr to Schema
std :: shared_ptr < Schema > schema ( FieldVector fields , Endianness endianness , std :: shared_ptr < const KeyValueMetadata > metadata = NULLPTR ) #Create a Schema instance.
fields – the schema’s fields
endianness – the endianness of the data
metadata – any custom key-value metadata, default null
schema shared_ptr to Schema
std :: shared_ptr < Schema > schema ( std :: initializer_list < std :: pair < std :: string , std :: shared_ptr < DataType > > > fields , Endianness endianness , std :: shared_ptr < const KeyValueMetadata > metadata = NULLPTR ) #Create a Schema instance.
The schema’s fields will all be nullable with no associated metadata.
fields – (name, type) pairs of the schema’s fields
endianness – the endianness of the data
metadata – any custom key-value metadata, default null
schema shared_ptr to Schema
class Field : public arrow :: detail :: Fingerprintable , public arrow :: util :: EqualityComparable < Field > #The combination of a field name and data type, with optional metadata.
Fields are used to describe the individual constituents of a nested DataType or a Schema .
A field’s metadata is represented by a KeyValueMetadata instance, which holds arbitrary key-value pairs.
Public Functions
inline std :: shared_ptr < const KeyValueMetadata > metadata ( ) const #Return the field’s attached metadata.
std :: shared_ptr < Field > WithMetadata ( const std :: shared_ptr < const KeyValueMetadata > & metadata ) const #Return a copy of this field with the given metadata attached to it.
std :: shared_ptr < Field > WithMergedMetadata ( const std :: shared_ptr < const KeyValueMetadata > & metadata ) const #EXPERIMENTAL: Return a copy of this field with the given metadata merged with existing metadata (any colliding keys will be overridden by the passed metadata)
Result < std :: shared_ptr < Field > > MergeWith ( const Field & other , MergeOptions options = MergeOptions :: Defaults ( ) ) const #Merge the current field with a field of the same name.
The two fields must be compatible, i.e:
have the same name
have the same type, or of compatible types according to
options
.
The metadata of the current field is preserved; the metadata of the other field is discarded.
bool Equals ( const Field & other , bool check_metadata = false ) const #Indicate if fields are equals.
other – [in] field to check equality with.
check_metadata – [in] controls if it should check for metadata equality.
true if fields are equal, false otherwise.
bool IsCompatibleWith ( const Field & other ) const #Indicate if fields are compatibles.
See the criteria of MergeWith.
true if fields are compatible, false otherwise.
std :: string ToString ( bool show_metadata = false ) const #Return a string representation ot the field.
show_metadata – [in] when true, if KeyValueMetadata is non-empty, print keys and values in the output
struct MergeOptions : public arrow :: util :: ToStringOstreamable < MergeOptions > #
Options that control the behavior of
MergeWith
.
Options are to be added to allow type conversions, including integer widening, promotion from integer to float, or conversion to or from boolean.
Public Functions
std :: string ToString ( ) const #Get a human-readable representation of the options.
bool promote_nullability = true #If true, a Field of NullType can be unified with a Field of another type.
The unified field will be of the other type and become nullable. Nullability will be promoted to the looser option (nullable if one is not nullable).
bool promote_decimal = false #Allow a decimal to be unified with another decimal of the same width, adjusting scale and precision as appropriate.
May fail if the adjustment is not possible.
bool promote_integer_to_decimal = false #Allow an integer to be promoted to a decimal.
May fail if the decimal has insufficient precision to accommodate the integer (see promote_numeric_width).
bool promote_integer_to_float = false #Allow an integer of a given bit width to be promoted to a float; the result will be a float of an equal or greater bit width to both of the inputs.
Examples:
int8 + float32 = float32
int32 + float32 = float64
int32 + float64 = float64 Because an int32 cannot always be represented exactly in the 24 bits of a float32 mantissa.
Allow merging ordered and non-ordered dictionaries.
The result will be ordered if and only if both inputs are ordered.
class Schema : public arrow :: detail :: Fingerprintable , public arrow :: util :: EqualityComparable < Schema > , public arrow :: util :: ToStringOstreamable < Schema > #Sequence of arrow::Field objects describing the columns of a record batch or table data structure.
Public Functions
bool Equals ( const Schema & other , bool check_metadata = false ) const #Returns true if all of the schema fields are equal.
std :: shared_ptr < Schema > WithEndianness ( Endianness endianness ) const #Set endianness in the schema.
new Schema
const std :: shared_ptr < const KeyValueMetadata > & metadata ( ) const #The custom key-value metadata, if any.
metadata may be null
std :: string ToString ( bool show_metadata = false ) const #Render a string representation of the schema suitable for debugging.
show_metadata – [in] when true, if KeyValueMetadata is non-empty, print keys and values in the output
Result < std :: shared_ptr < Schema > > WithNames ( const std :: vector < std :: string > & names ) const #Replace field names with new names.
names – [in] new names
new Schema
std :: shared_ptr < Schema > WithMetadata ( const std :: shared_ptr < const KeyValueMetadata > & metadata ) const #Replace key-value metadata with new metadata.
metadata – [in] new KeyValueMetadata
new Schema
class FieldPath #Represents a path to a nested field using indices of child fields.
For example, given indices {5, 9, 3} the field would be retrieved with schema->field(5)->type()->field(9)->type()->field(3)
Attempting to retrieve a child field using a FieldPath which is not valid for a given schema will raise an error. Invalid FieldPaths include:
an index is out of range
the path is empty (note: a default constructed FieldPath will be empty)
FieldPaths provide a number of accessors for drilling down to potentially nested children. They are overloaded for convenience to support Schema (returns a field), DataType (returns a child field), Field (returns a child field of this field’s type) Array (returns a child array), RecordBatch (returns a column).
Public Functions
FieldPath ( ) = default #Retrieve the referenced child from a ChunkedArray .
Result < std :: shared_ptr < Array > > GetFlattened ( const Array & array , MemoryPool * pool = NULLPTR ) const #Retrieve the referenced child/column from an Array , ArrayData , ChunkedArray , RecordBatch , or Table .
Unlike
FieldPath::Get
, these variants are not zero-copy and the retrieved child’s null bitmap is ANDed with its ancestors’
Descriptor of a (potentially nested) field within a schema.
Unlike
FieldPath
(which exclusively uses indices of child fields),
FieldRef
may reference a field by name. It is intended to replace parameters like
int
field_index
and
const
std::string&
field_name
; it can be implicitly constructed from either a field index or a name.
Nested fields can be referenced as well. Given schema({field(“a”, struct_({field(“n”, null() )})), field(“b”, int32() )})
the following all indicate the nested field named “n”: FieldRef ref1(0, 0); FieldRef ref2(“a”, 0); FieldRef ref3(“a”, “n”); FieldRef ref4(0, “n”); ARROW_ASSIGN_OR_RAISE( FieldRef ref5, FieldRef::FromDotPath (“.a[0]”));
FieldPaths matching a FieldRef are retrieved using the member function FindAll. Multiple matches are possible because field names may be duplicated within a schema. For example: Schema a_is_ambiguous({field(“a”, int32() ), field(“a”, float32() )}); auto matches = FieldRef (“a”).FindAll(a_is_ambiguous); assert(matches.size() == 2); assert(matches[0].Get(a_is_ambiguous)->Equals(a_is_ambiguous.field(0))); assert(matches[1].Get(a_is_ambiguous)->Equals(a_is_ambiguous.field(1)));
Convenience accessors are available which raise a helpful error if the field is not found or ambiguous, and for immediately calling FieldPath::Get to retrieve any matching children: auto maybe_match = FieldRef (“struct”, “field_i32”).FindOneOrNone(schema); auto maybe_column = FieldRef (“struct”, “field_i32”).GetOne(some_table);
Public Types
template < typename T >Construct a FieldRef using a string of indices.
The reference will be retrieved as: schema.fields[self.indices[0]].type.fields[self.indices[1]] …
Empty indices are not valid.
template < typename A0 , typename A1 , typename ... A >Convenience constructor for nested FieldRefs: each argument will be used to construct a FieldRef .
inline bool IsNameSequence ( ) const #Return true if this ref is a name or a nested sequence of only names.
Useful for determining if iteration is possible without recursion or inner loops
template < typename T >Convenience function: raise an error if matches is empty.
template < typename T >Convenience function: raise an error if matches contains multiple FieldPaths.
template < typename T >Retrieve FieldPath of a single child field which matches this FieldRef .
Emit an error if none or multiple match.
template < typename T >Retrieve FieldPath of a single child field which matches this FieldRef .
Emit an error if multiple match. An empty (invalid) FieldPath will be returned if none match.
template < typename T >Get all children matching this FieldRef .
Unlike
FieldRef::GetAll
, this variant is not zero-copy and the retrieved children’s null bitmaps are ANDed with their ancestors’
Get the single child matching this FieldRef .
Emit an error if none or multiple match.
template < typename T >Get the single child matching this FieldRef .
Unlike
FieldRef::GetOne
, this variant is not zero-copy and the retrieved child’s null bitmap is ANDed with its ancestors’
Get the single child matching this FieldRef .
Return nullptr if none match, emit an error if multiple match.
template < typename T >Get the single child matching this FieldRef .
Return nullptr if none match, emit an error if multiple match. Unlike
FieldRef::GetOneOrNone
, this variant is not zero-copy and the retrieved child’s null bitmap is ANDed with its ancestors’
Parse a dot path into a FieldRef .
dot_path = ‘.’ name | ‘[’ digit+ ‘]’ | dot_path+
Examples: “.alpha” => FieldRef (“alpha”) “[2]” => FieldRef(2) “.beta[3]” => FieldRef (“beta”, 3) “[5].gamma.delta[7]” => FieldRef (5, “gamma”, “delta”, 7) “.hello world” => FieldRef (“hello world”) R”(.\[y\]\tho.\)” => FieldRef (R”([y]\tho.\)”)
Note: When parsing a name, a ‘' preceding any other character will be dropped from the resulting name. Therefore if a name must contain the characters ‘.’, ‘', or ‘[’ those must be escaped with a preceding ‘'.
class TypeVisitor #Abstract type visitor class.
Subclass this to create a visitor that can be used with the DataType::Accept() method.
Public Functions
virtual ~TypeVisitor ( ) = default #