1
Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
2
State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
3
College of Grassland, Resource and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
摘要:
植物性状能够反映植物的生存策略, 是植物生态学的研究热点之一。植物CSR策略模型将植物物种分为3类: 在资源丰富环境中能够最大程度提高生物量的物种(竞争型物种: C策略); 在干扰频率较高的环境中能够快速摄取资源并繁殖的物种(投机取巧型物种: R策略); 在资源贫瘠环境中能够保持个体生存的物种(耐受型物种: S策略)。植物叶片性状对环境梯度具有适应性的改变, 性状的改变对植物生存策略产生影响, 但是青藏高原植物叶片性状是如何影响植物CSR生存策略的, 其机制尚不清楚。该研究探究了高寒草地植物CSR生存策略的分布特征, 以及环境因子对CSR生存策略的影响机制。2020年7-8月, 对青藏高原高寒草地53个样点进行了调查, 测定植物叶片叶面积、叶片鲜质量和叶片干质量等性状, 并计算C、S、R值。然后, 分析关键地理环境要素对植物CSR策略影响的主要因子和作用机理。结果表明: (1)在青藏高原高寒草地, 植物的生存策略主要以S策略(41.6%-96.7%)为主。(2)随着经度的增加, 青藏高原高寒草地C策略植物所占比例自西向东逐渐上升; 在海拔梯度上, 高寒草地C策略植物所占比例随着海拔的升高而降低。(3)随机森林分析结果显示降水量对C策略的贡献率最高(25.74%), 海拔对S策略的贡献率最高(27.34%); 分析气候因子对植物性状的影响发现降水量和温度只对叶面积产生显著影响, 且叶片含水量对植物C、S策略具有显著效应。综合而言, 研究发现降水量是影响植物CSR生存策略最关键的因子, 这对于研究高寒草地植物对环境梯度的生态适应具有十分重要的意义。
Abstract:
Aims
Vegetation traits are one of the research hotspots in plant ecology and they reflect the strategies of plant survival. According to the CSR survival strategy model, plant species may be classified into three categories: C strategy that can maximize biomass in resource-rich environments (competitive species); R strategy that can rapidly intake resources and reproduce in environments with a high frequency of disturbance (opportunistic species); and S strategy that can maintain individual survival in resource-poor environments (tolerant species). Leaf traits have adaptive changes in response to environmental gradients, which have impacts on plant adaptation. The mechanisms of how leaf traits affect CSR survival strategies in the alpine grassland of Qingzang Plateau remain unclear. The objective of this paper is to investigate the spatial patterns of CSR survival strategies of alpine plants and the mechanisms by which environmental factors influence plant survival.
Methods
We surveyed a field transect which consists of 53 sample sites in an alpine grassland on the Qingzang Plateau from July to August 2020. Vegetation traits of leaf area, leaf fresh mass, and leaf dry mass were measured and C, S, R values were calculated. Finally, we analyzed the critical drivers and mechanism of plant CSR strategies in response to geographical elements.
Important findings
Our results showed that: (1) In the alpine grassland of the Qingzang Plateau, 41.6%-96.7% of plants are identified as S strategy. (2) With the increase of the longitude, the proportion of C strategy plants increased gradually from the west to the east, whereas along the altitude gradient, the proportion of C strategy plants decreased with the increasing altitude. (3) Random forest analysis showed that the contribution of precipitation to C strategy is the highest (25.74%), and the contribution of altitude to S strategy is the highest (27.34%). Additionally, both precipitation and temperature had significant effects on leaf area, and leaf water content significantly affects plant CSR strategies. In summary, results of our study highlighted that precipitation is the most critical factor that governs plant CSR survival strategies. This finding has important implications for studying the ecological adaptation along environmental gradients in alpine grasslands.
Key words:
CSR strategy,
leaf trait,
environmental gradient,
Qingzang Plateau,
alpine grassland
林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素. 植物生态学报, 2023, 47(1): 41-50. DOI:
10.17521/cjpe.2022.0123
LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland.
Chinese Journal of Plant Ecology
, 2023, 47(1): 41-50. DOI:
10.17521/cjpe.2022.0123
图3
青藏高原高寒草地常见植物C策略(A)和S策略(B)与各环境因子的相关性热度图。*, p < 0.05; **, p < 0.01。AI, 干旱指数; Alt, 海拔; C, 竞争型; Lat, 纬度; Lon, 经度; Pre, 降水量; S, 忍受型; Tem, 温度。
Fig. 3
Heat map of the correlation between C (A) and S (B) strategies and environmental factors in alpine grassland on the Qingzang Plateau. *, p < 0.05; **, p < 0.01. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
图3
青藏高原高寒草地常见植物C策略(A)和S策略(B)与各环境因子的相关性热度图。*, p < 0.05; **, p < 0.01。AI, 干旱指数; Alt, 海拔; C, 竞争型; Lat, 纬度; Lon, 经度; Pre, 降水量; S, 忍受型; Tem, 温度。
Fig. 3
Heat map of the correlation between C (A) and S (B) strategies and environmental factors in alpine grassland on the Qingzang Plateau. *, p < 0.05; **, p < 0.01. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
图4
青藏高原高寒草地环境因子对C策略(A)、S策略(B)的相对重要性分析。AI, 干旱指数; Alt, 海拔; C, 竞争型; Lat, 纬度; Lon, 经度; Pre, 降水量; S, 忍受型; Tem, 温度。
Fig. 4
Relative importance of effect of environmental factors on C (A) and S (B) strategies in alpine grassland on the Qingzang Plateau. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
图4
青藏高原高寒草地环境因子对C策略(A)、S策略(B)的相对重要性分析。AI, 干旱指数; Alt, 海拔; C, 竞争型; Lat, 纬度; Lon, 经度; Pre, 降水量; S, 忍受型; Tem, 温度。
Fig. 4
Relative importance of effect of environmental factors on C (A) and S (B) strategies in alpine grassland on the Qingzang Plateau. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
Behroozian M, Ejtehadi H, Memariani F, Pierce S, Mesdaghi M (2020). Are endemic species necessarily ecological specialists? Functional variability and niche differentiation of two threatened
Dianthus
species in the montane steppes of northeastern Iran.
Scientific Reports
, 10, 11774. DOI: 10.1038/s41598-020-68618-7.
Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006). The functional basis of a primary succession resolved by CSR classification.
Oikos
, 112, 10-20.
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum.
Ecology Letters
, 12, 351-366.
Chen L (2015). Response of Leaf Traits at Species and Functional Group Levels to Simulated Nitrogen Deposition and Precipitation Additions in a Stipa baicalensis Meadow Steppe. Master degree dissertation, Northeast Normal University, Changchun.
Cross EL, Green PT, Morgan JW (2015). A plant strategy approach to understand multidecadal change in community assembly processes in Australian grassy woodlands.
Journal of Ecology
, 103, 1300-1307.
Davison J, García de León D, Zobel M, Moora M, Bueno CG, Barceló M, Gerz M, León D, Meng YM, Pillar VD, Sepp SK, Soudzilovaskaia NA, Tedersoo L, Vaessen S, Vahter T,
et al
. (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities.
New Phytologist
, 226, 1117-1128.
Ferré C, Caccianiga M, Zanzottera M, Comolli R (2020). Soil-plant interactions in a pasture of the Italian Alps.
Journal of Plant Interactions
, 15, 39-49.
Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001). Consistency of species ranking based on functional leaf traits.
New Phytologist
, 152, 69-83.
Godoy O, Valladares F, Castro-Díez P (2011). Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity.
Functional Ecology
, 25, 1248-1259.
Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory.
The American Naturalist
, 111, 1221-1226.
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL,
et al
. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation.
Trends in Ecology & Evolution
, 35, 908-918.
Holmgren M, Pooter L (2007). Does a ruderal strategy dominate the endemic flora of the West African forests? Journal of Biogeography, 34, 1100-1111.
Li Y, Wang Y, Han GD, Sun J, Wang YF (2022). Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau.
Acta Prataculturae Sinica
, 31, 50-60.
Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems.
Chinese Journal of Plant Ecology
, 36, 88-98.
Li YZ, Shipley B (2017). An experimental test of CSR theory using a globally calibrated ordination method.
PLOS ONE
, 12, e0175404. DOI: 10.1371/journal.pone.0175404.
Liao HX, Li DJ, Zhou T, Huang B, Zhang HJ, Chen BM, Peng SL (2021). The role of functional strategies in global plant distribution.
Ecography
, 44, 493-503.
Ma BB, Sun J, Zhu JT, Luo GX (2018). Carbon and nitrogen stoichiometry of plant community and its influencing factors in a northern Tibet alpine grassland.
Chinese Journal of Ecology
, 37, 1026-1036.
Matos IS, Eller CB, Oliveras I, Mantuano D, Rosado BHP (2021). Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland.
Journal of Ecology
, 109, 327-341.
Nastos PT, Politi N, Kapsomenakis J (2013). Spatial and temporal variability of the Aridity Index in Greece.
Atmospheric Research
, 119, 140-152.
Piao SL, Fang JY, He JS, Xiao Y (2004). Spatial distribution of grassland biomass in China.
Acta Phytoecologica Sinica
, 28, 491-498.
Pierce S, Negreiros D, Cerabolini BEL, Kattge J, Díaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom PM, Frenette-Dussault C, Weiher E, Pinho BX, Cornelissen JHC,
et al
. (2017). A global method for calculating plant CSR ecological strategies applied across biomes world-wide.
Functional Ecology
, 31, 444-457.
Quan Q, Tian DS, Luo YQ, Zhang FY, Crowther TW, Zhu K, Chen HYH, Zhou QP, Niu SL (2019). Water scaling of ecosystem carbon cycle feedback to climate warming.
Science Advances
, 5, eaav1131. DOI: 10.1126/sciadv.aav1131.
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto.
Journal of Ecology
, 102, 275-301.
Sun J, Liu GH (2021). Alpine grassland on the Qingzang Plateau: pattern and process.
Chinese Journal of Plant Ecology
, 45, 429-433.
Sun J, Liu M, Fu BJ, Kemp D, Zhao WW, Liu GH, Han GD, Wilkes A, Lu XY, Chen YC, Cheng GW, Zhou TC, Hou G, Zhan TY, Peng F,
et al
. (2020b). Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau.
Science Bulletin
, 65, 1405-1414.
Sun J, Wang Y, Liu GH (2021). Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau.
Chinese Journal of Plant Ecology
, 45, 496-506.
Sun J, Zhou TC, Liu M, Chen YC, Liu GH, Xu M, Shi PL, Peng F, Tsunekawa A, Liu Y, Wang XD, Dong SK, Zhang YJ, Li YN (2020a). Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau.
Global Ecology and Biogeography
, 29, 50-64.
Timmermann A, Damgaard C, Strandberg MT, Svenning JC (2015). Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species.
Journal of Applied Ecology
, 52, 21-30.
Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change.
Chinese Journal of Plant Ecology
, 39, 206-216.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K,
et al
. (2004). The worldwide leaf economics spectrum.
Nature
, 428, 821-827.
Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of
Abies faxoniana
seedlings.
Acta Ecologica Sinica
, 30, 5994-6000.
Yang DC, Hu L, Song XY, Wang CT (2021). Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow.
Chinese Journal of Plant Ecology
, 45, 1314-1328.
Yang JH, Li YN, Bu HY, Zhang ST, Qi W (2019). Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau.
Chinese Journal of Plant Ecology
, 43, 863-876.
Zhou TC, Hou G, Sun J, Zong N, Shi PL (2021a). Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau.
Science of the Total Environment
, 800, 149572. DOI: 10.1016/j.scitotenv.2021.149572.
Zhou TC, Sun J, Liu M, Shi PL, Zhang XB, Sun W, Yang G, Tsunekawa A (2020). Coupling between plant nitrogen and phosphorus along water and heat gradients in alpine grassland.
Science of the Total Environment
, 701, 134660. DOI: 10.1016/j.scitotenv.2019.134660.
Zhou TC, Sun J, Shi PL (2021b). Plant-microbe interactions regulate the aboveground community nitrogen accumulation rate in different environmental conditions on the Tibetan Plateau.
Catena
, 204, 105407. DOI: 10.1016/j.catena.2021.105407.
师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳.
青藏高原高山嵩草光合功能对模拟夜间低温的响应
[J]. 植物生态学报, 2023, 47(3): 361-373.
夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新.
青藏高原那曲高山嵩草草甸植物物候对增温的异步响应
[J]. 植物生态学报, 2023, 47(2): 183-194.
师生波, 师瑞, 周党卫, 张雯.
低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响
[J]. 植物生态学报, 2023, 47(10): 1441-1452.
朱玉英, 张华敏, 丁明军, 余紫萍.
青藏高原植被绿度变化及其对干湿变化的响应
[J]. 植物生态学报, 2023, 47(1): 51-64.
魏瑶, 马志远, 周佳颖, 张振华.
模拟增温改变青藏高原植物繁殖物候及植株高度
[J]. 植物生态学报, 2022, 46(9): 995-1004.
董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭.
放牧方式影响高寒草地矮生嵩草种子大小与数量的关系
[J]. 植物生态学报, 2022, 46(9): 1018-1026.
董六文, 任正炜, 张蕊, 谢晨笛, 周小龙.
功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响
[J]. 植物生态学报, 2022, 46(8): 871-881.
金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健.
青藏高原植物群落样方数据集
[J]. 植物生态学报, 2022, 46(7): 846-854.
李露, 金光泽, 刘志理.
阔叶红松林3种阔叶树种柄叶性状变异与相关性
[J]. 植物生态学报, 2022, 46(6): 687-699.
卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤.
祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应
[J]. 植物生态学报, 2022, 46(5): 569-579.
胡潇飞, 魏临风, 程琦, 吴星麒, 倪健.
青藏高原地区气候图解数据集
[J]. 植物生态学报, 2022, 46(4): 484-492.
吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军.
青藏高原高寒草地退化对土壤及微生物化学计量特征的影响
[J]. 植物生态学报, 2022, 46(4): 461-472.
陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙.
养分添加对天山高寒草地植物多样性和地上生物量的影响
[J]. 植物生态学报, 2022, 46(3): 280-289.
郑周涛, 张扬建.
1982-2018年青藏高原水分利用效率变化及归因分析
[J]. 植物生态学报, 2022, 46(12): 1486-1496.
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail:
[email protected],
[email protected]
备案号:
京ICP备16067583号-19