from django.contrib.postgres.fields import ArrayField
from django.db import models
class ChessBoard(models.Model):
board = ArrayField(
ArrayField(
models.CharField(max_length=10, blank=True),
size=8,
size=8,
Transformation of values between the database and the model, validation
of data and configuration, and serialization are all delegated to the
underlying base field.
size
This is an optional argument.
If passed, the array will have a maximum size as specified. This will
be passed to the database, although PostgreSQL at present does not
enforce the restriction.
When nesting ArrayField
, whether you use the size
parameter or not,
PostgreSQL requires that the arrays are rectangular:
from django.contrib.postgres.fields import ArrayField
from django.db import models
class Board(models.Model):
pieces = ArrayField(ArrayField(models.IntegerField()))
# Valid
Board(
pieces=[
[2, 3],
[2, 1],
# Not valid
Board(
pieces=[
[2, 3],
[2],
If irregular shapes are required, then the underlying field should be made
nullable and the values padded with None
.
Querying ArrayField
There are a number of custom lookups and transforms for ArrayField
.
We will use the following example model:
from django.contrib.postgres.fields import ArrayField
from django.db import models
class Post(models.Model):
name = models.CharField(max_length=200)
tags = ArrayField(models.CharField(max_length=200), blank=True)
def __str__(self):
return self.name
contains
The contains
lookup is overridden on ArrayField
. The
returned objects will be those where the values passed are a subset of the
data. It uses the SQL operator @>
. For example:
>>> Post.objects.create(name="First post", tags=["thoughts", "django"])
>>> Post.objects.create(name="Second post", tags=["thoughts"])
>>> Post.objects.create(name="Third post", tags=["tutorial", "django"])
>>> Post.objects.filter(tags__contains=["thoughts"])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__contains=["django"])
<QuerySet [<Post: First post>, <Post: Third post>]>
>>> Post.objects.filter(tags__contains=["django", "thoughts"])
<QuerySet [<Post: First post>]>
contained_by
This is the inverse of the contains
lookup -
the objects returned will be those where the data is a subset of the values
passed. It uses the SQL operator <@
. For example:
>>> Post.objects.create(name="First post", tags=["thoughts", "django"])
>>> Post.objects.create(name="Second post", tags=["thoughts"])
>>> Post.objects.create(name="Third post", tags=["tutorial", "django"])
>>> Post.objects.filter(tags__contained_by=["thoughts", "django"])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__contained_by=["thoughts", "django", "tutorial"])
<QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
overlap
Returns objects where the data shares any results with the values passed. Uses
the SQL operator &&
. For example:
>>> Post.objects.create(name="First post", tags=["thoughts", "django"])
>>> Post.objects.create(name="Second post", tags=["thoughts", "tutorial"])
>>> Post.objects.create(name="Third post", tags=["tutorial", "django"])
>>> Post.objects.filter(tags__overlap=["thoughts"])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__overlap=["thoughts", "tutorial"])
<QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
>>> Post.objects.filter(tags__overlap=Post.objects.values_list("tags"))
<QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
Changed in Django 4.2: Support for QuerySet.values()
and values_list()
as a right-hand
side was added.
len
Returns the length of the array. The lookups available afterward are those
available for IntegerField
. For example:
>>> Post.objects.create(name="First post", tags=["thoughts", "django"])
>>> Post.objects.create(name="Second post", tags=["thoughts"])
>>> Post.objects.filter(tags__len=1)
<QuerySet [<Post: Second post>]>
Index transforms
Index transforms index into the array. Any non-negative integer can be used.
There are no errors if it exceeds the size
of the
array. The lookups available after the transform are those from the
base_field
. For example:
>>> Post.objects.create(name="First post", tags=["thoughts", "django"])
>>> Post.objects.create(name="Second post", tags=["thoughts"])
>>> Post.objects.filter(tags__0="thoughts")
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__1__iexact="Django")
<QuerySet [<Post: First post>]>
>>> Post.objects.filter(tags__276="javascript")
<QuerySet []>
PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
However these indexes and those used in slices
use 0-based indexing to be consistent with Python.
Slice transforms
Slice transforms take a slice of the array. Any two non-negative integers can
be used, separated by a single underscore. The lookups available after the
transform do not change. For example:
>>> Post.objects.create(name="First post", tags=["thoughts", "django"])
>>> Post.objects.create(name="Second post", tags=["thoughts"])
>>> Post.objects.create(name="Third post", tags=["django", "python", "thoughts"])
>>> Post.objects.filter(tags__0_1=["thoughts"])
<QuerySet [<Post: First post>, <Post: Second post>]>
>>> Post.objects.filter(tags__0_2__contains=["thoughts"])
<QuerySet [<Post: First post>, <Post: Second post>]>
PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
However these slices and those used in indexes
use 0-based indexing to be consistent with Python.
Multidimensional arrays with indexes and slices
PostgreSQL has some rather esoteric behavior when using indexes and slices
on multidimensional arrays. It will always work to use indexes to reach
down to the final underlying data, but most other slices behave strangely
at the database level and cannot be supported in a logical, consistent
fashion by Django.
Deprecated since version 4.2.
A mixin to create case-insensitive text fields backed by the citext type.
Read about the performance considerations prior to using it.
To use citext
, use the CITextExtension
operation to
set up the citext extension in
PostgreSQL before the first CreateModel
migration operation.
If you’re using an ArrayField
of CIText
fields, you must add 'django.contrib.postgres'
in your
INSTALLED_APPS
, otherwise field values will appear as strings
like '{thoughts,django}'
.
Several fields that use the mixin are provided:
class CICharField
(**options)
Deprecated since version 4.2: CICharField
is deprecated in favor of
CharField(db_collation="…")
with a case-insensitive
non-deterministic collation.
class CIEmailField
(**options)
Deprecated since version 4.2: CIEmailField
is deprecated in favor of
EmailField(db_collation="…")
with a case-insensitive
non-deterministic collation.
class CITextField
(**options)
Deprecated since version 4.2: CITextField
is deprecated in favor of
TextField(db_collation="…")
with a case-insensitive
non-deterministic collation.
These fields subclass CharField
,
EmailField
, and
TextField
, respectively.
max_length
won’t be enforced in the database since citext
behaves
similar to PostgreSQL’s text
type.
Case-insensitive collations
It’s preferable to use non-deterministic collations instead of the
citext
extension. You can create them using the
CreateCollation
migration
operation. For more details, see Managing collations using migrations and
the PostgreSQL documentation about non-deterministic collations.
HStoreField
class HStoreField
(**options)
A field for storing key-value pairs. The Python data type used is a
dict
. Keys must be strings, and values may be either strings or nulls
(None
in Python).
To use this field, you’ll need to:
Add 'django.contrib.postgres'
in your INSTALLED_APPS
.
Set up the hstore extension in
PostgreSQL.
You’ll see an error like can't adapt type 'dict'
if you skip the first
step, or type "hstore" does not exist
if you skip the second.
On occasions it may be useful to require or restrict the keys which are
valid for a given field. This can be done using the
KeysValidator
.
Querying HStoreField
In addition to the ability to query by key, there are a number of custom
lookups available for HStoreField
.
We will use the following example model:
from django.contrib.postgres.fields import HStoreField
from django.db import models
class Dog(models.Model):
name = models.CharField(max_length=200)
data = HStoreField()
def __str__(self):
return self.name
Key lookups
To query based on a given key, you can use that key as the lookup name:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
>>> Dog.objects.create(name="Meg", data={"breed": "collie"})
>>> Dog.objects.filter(data__breed="collie")
<QuerySet [<Dog: Meg>]>
You can chain other lookups after key lookups:
>>> Dog.objects.filter(data__breed__contains="l")
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
or use F()
expressions to annotate a key value. For example:
>>> from django.db.models import F
>>> rufus = Dog.objects.annotate(breed=F("data__breed"))[0]
>>> rufus.breed
'labrador'
If the key you wish to query by clashes with the name of another lookup, you
need to use the hstorefield.contains
lookup instead.
Key transforms can also be chained with: contains
,
icontains
, endswith
, iendswith
,
iexact
, regex
, iregex
, startswith
,
and istartswith
lookups.
Warning
Since any string could be a key in a hstore value, any lookup other than
those listed below will be interpreted as a key lookup. No errors are
raised. Be extra careful for typing mistakes, and always check your queries
work as you intend.
contains
The contains
lookup is overridden on
HStoreField
. The returned objects are
those where the given dict
of key-value pairs are all contained in the
field. It uses the SQL operator @>
. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
>>> Dog.objects.create(name="Fred", data={})
>>> Dog.objects.filter(data__contains={"owner": "Bob"})
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
>>> Dog.objects.filter(data__contains={"breed": "collie"})
<QuerySet [<Dog: Meg>]>
contained_by
This is the inverse of the contains
lookup -
the objects returned will be those where the key-value pairs on the object are
a subset of those in the value passed. It uses the SQL operator <@
. For
example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
>>> Dog.objects.create(name="Fred", data={})
>>> Dog.objects.filter(data__contained_by={"breed": "collie", "owner": "Bob"})
<QuerySet [<Dog: Meg>, <Dog: Fred>]>
>>> Dog.objects.filter(data__contained_by={"breed": "collie"})
<QuerySet [<Dog: Fred>]>
has_key
Returns objects where the given key is in the data. Uses the SQL operator
?
. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
>>> Dog.objects.filter(data__has_key="owner")
<QuerySet [<Dog: Meg>]>
has_any_keys
Returns objects where any of the given keys are in the data. Uses the SQL
operator ?|
. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
>>> Dog.objects.create(name="Meg", data={"owner": "Bob"})
>>> Dog.objects.create(name="Fred", data={})
>>> Dog.objects.filter(data__has_any_keys=["owner", "breed"])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
has_keys
Returns objects where all of the given keys are in the data. Uses the SQL operator
?&
. For example:
>>> Dog.objects.create(name="Rufus", data={})
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
>>> Dog.objects.filter(data__has_keys=["breed", "owner"])
<QuerySet [<Dog: Meg>]>
keys
Returns objects where the array of keys is the given value. Note that the order
is not guaranteed to be reliable, so this transform is mainly useful for using
in conjunction with lookups on
ArrayField
. Uses the SQL function
akeys()
. For example:
>>> Dog.objects.create(name="Rufus", data={"toy": "bone"})
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
>>> Dog.objects.filter(data__keys__overlap=["breed", "toy"])
<QuerySet [<Dog: Rufus>, <Dog: Meg>]>
values
Returns objects where the array of values is the given value. Note that the
order is not guaranteed to be reliable, so this transform is mainly useful for
using in conjunction with lookups on
ArrayField
. Uses the SQL function
avals()
. For example:
>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
>>> Dog.objects.filter(data__values__contains=["collie"])
<QuerySet [<Dog: Meg>]>
Range Fields
There are five range field types, corresponding to the built-in range types in
PostgreSQL. These fields are used to store a range of values; for example the
start and end timestamps of an event, or the range of ages an activity is
suitable for.
All of the range fields translate to psycopg Range objects in Python, but also accept tuples as input if no bounds
information is necessary. The default is lower bound included, upper bound
excluded, that is [)
(see the PostgreSQL documentation for details about
different bounds). The default bounds can be changed for non-discrete range
fields (DateTimeRangeField
and DecimalRangeField
) by using
the default_bounds
argument.
IntegerRangeField
class IntegerRangeField
(**options)
Stores a range of integers. Based on an
IntegerField
. Represented by an int4range
in
the database and a
django.db.backends.postgresql.psycopg_any.NumericRange
in Python.
Regardless of the bounds specified when saving the data, PostgreSQL always
returns a range in a canonical form that includes the lower bound and
excludes the upper bound, that is [)
.
class BigIntegerRangeField
(**options)
Stores a range of large integers. Based on a
BigIntegerField
. Represented by an int8range
in the database and a
django.db.backends.postgresql.psycopg_any.NumericRange
in Python.
Regardless of the bounds specified when saving the data, PostgreSQL always
returns a range in a canonical form that includes the lower bound and
excludes the upper bound, that is [)
.
class DecimalRangeField
(default_bounds='[)', **options)
Stores a range of floating point values. Based on a
DecimalField
. Represented by a numrange
in
the database and a
django.db.backends.postgresql.psycopg_any.NumericRange
in Python.
default_bounds
Optional. The value of bounds
for list and tuple inputs. The
default is lower bound included, upper bound excluded, that is [)
(see the PostgreSQL documentation for details about
different bounds). default_bounds
is not used for
django.db.backends.postgresql.psycopg_any.NumericRange
inputs.
class DateTimeRangeField
(default_bounds='[)', **options)
Stores a range of timestamps. Based on a
DateTimeField
. Represented by a tstzrange
in
the database and a
django.db.backends.postgresql.psycopg_any.DateTimeTZRange
in Python.
default_bounds
Optional. The value of bounds
for list and tuple inputs. The
default is lower bound included, upper bound excluded, that is [)
(see the PostgreSQL documentation for details about
different bounds). default_bounds
is not used for
django.db.backends.postgresql.psycopg_any.DateTimeTZRange
inputs.
class DateRangeField
(**options)
Stores a range of dates. Based on a
DateField
. Represented by a daterange
in the
database and a django.db.backends.postgresql.psycopg_any.DateRange
in
Python.
Regardless of the bounds specified when saving the data, PostgreSQL always
returns a range in a canonical form that includes the lower bound and
excludes the upper bound, that is [)
.
Querying Range Fields
There are a number of custom lookups and transforms for range fields. They are
available on all the above fields, but we will use the following example
model:
from django.contrib.postgres.fields import IntegerRangeField
from django.db import models
class Event(models.Model):
name = models.CharField(max_length=200)
ages = IntegerRangeField()
start = models.DateTimeField()
def __str__(self):
return self.name
We will also use the following example objects:
>>> import datetime
>>> from django.utils import timezone
>>> now = timezone.now()
>>> Event.objects.create(name="Soft play", ages=(0, 10), start=now)
>>> Event.objects.create(
... name="Pub trip", ages=(21, None), start=now - datetime.timedelta(days=1)
... )
and NumericRange
:
>>> from django.db.backends.postgresql.psycopg_any import NumericRange
Containment functions
As with other PostgreSQL fields, there are three standard containment
operators: contains
, contained_by
and overlap
, using the SQL
operators @>
, <@
, and &&
respectively.
contains
>>> Event.objects.filter(ages__contains=NumericRange(4, 5))
<QuerySet [<Event: Soft play>]>
contained_by
>>> Event.objects.filter(ages__contained_by=NumericRange(0, 15))
<QuerySet [<Event: Soft play>]>
The contained_by
lookup is also available on the non-range field types:
SmallAutoField
,
AutoField
, BigAutoField
,
SmallIntegerField
,
IntegerField
,
BigIntegerField
,
DecimalField
, FloatField
,
DateField
, and
DateTimeField
. For example:
>>> from django.db.backends.postgresql.psycopg_any import DateTimeTZRange
>>> Event.objects.filter(
... start__contained_by=DateTimeTZRange(
... timezone.now() - datetime.timedelta(hours=1),
... timezone.now() + datetime.timedelta(hours=1),
... ),
... )
<QuerySet [<Event: Soft play>]>
Comparison functions
Range fields support the standard lookups: lt
, gt
,
lte
and gte
. These are not particularly helpful - they
compare the lower bounds first and then the upper bounds only if necessary.
This is also the strategy used to order by a range field. It is better to use
the specific range comparison operators.
fully_lt
The returned ranges are strictly less than the passed range. In other words,
all the points in the returned range are less than all those in the passed
range.
>>> Event.objects.filter(ages__fully_lt=NumericRange(11, 15))
<QuerySet [<Event: Soft play>]>
fully_gt
The returned ranges are strictly greater than the passed range. In other words,
the all the points in the returned range are greater than all those in the
passed range.
>>> Event.objects.filter(ages__fully_gt=NumericRange(11, 15))
<QuerySet [<Event: Pub trip>]>
not_lt
The returned ranges do not contain any points less than the passed range, that
is the lower bound of the returned range is at least the lower bound of the
passed range.
>>> Event.objects.filter(ages__not_lt=NumericRange(0, 15))
<QuerySet [<Event: Soft play>, <Event: Pub trip>]>
not_gt
The returned ranges do not contain any points greater than the passed range, that
is the upper bound of the returned range is at most the upper bound of the
passed range.
>>> Event.objects.filter(ages__not_gt=NumericRange(3, 10))
<QuerySet [<Event: Soft play>]>
adjacent_to
The returned ranges share a bound with the passed range.
>>> Event.objects.filter(ages__adjacent_to=NumericRange(10, 21))
<QuerySet [<Event: Soft play>, <Event: Pub trip>]>