python实现双向自注意力机制
时间: 2023-09-21 21:10:45
浏览: 78
双向自注意力机制(Bidirectional Self-Attention)是一种自然[语言](https://geek.csdn.net/educolumn/05c8de7581a582e6d46821757663ed30?spm=1055.2569.3001.10083)处理中常用的模型,可以将一个序列中的每个元素编码为一个向量,同时利用序列中其他元素的信息进行[上下文](https://geek.csdn.net/educolumn/396550aabaa0961ca124e1fe124ebc0f?spm=1055.2569.3001.10083)建模。在Python中,可以使用Transformer模型来实现双向自注意力机制。
以下是一个简单的实现:
```python
import torch
import torch.nn as nn
class BiAttention(nn.[module](https://geek.csdn.net/educolumn/34e60ffe14901ff5e838415c8746f124?spm=1055.2569.3001.10083)):
def __init__(self, input_dim, hidden_dim):
su[per](https://geek.csdn.net/educolumn/2c6ed1be7edac16b3c9a0c3228eaff0c?spm=1055.2569.3001.10083)(BiAttention, self).__init__()
self.hidden_dim = hidden_dim
# 用于计算注意力得分的线性层
self.query = nn.Linear(input_dim, hidden_dim, bias=False)
self.key = nn.Linear(input_dim, hidden_dim, bias=False)
self.value = nn.Linear(input_dim, hidden_dim, bias=False)
# 输出层
self.out = nn.Linear(hidden_dim, input_dim)
def forward(self, x):
# x: [[bat](https://geek.csdn.net/educolumn/1c7183200a2468af5aab96a31844721a?spm=1055.2569.3001.10083)ch_size, seq_
```
相关推荐

















