添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

I have a dataframe where the column names are times (0:00, 0:10, 0:20, ..., 23:50). Right now, they're sorted in a string order (so 0:00 is first and 9:50 is last) but I want to sort them after time (so 0:00 is first and 23:50 is last).

If time is a column, you can use

df = df.sort(columns='Time',key=float)

But 1) that only works if time is a column itself, rather than the column names, and 2) sort() is deprecated so I try to abstain from using it.

I'm trying to use

df = df.sort_index(axis = 1)

but since the column names are in string format, they get sorted according to a string key. I've tried

df = df.sort_index(key=float, axis=1)

but that gives an error message:

Traceback (most recent call last):

File "", line 1, in

df.sort_index(key=float, axis=1)

TypeError: sort_index() got an unexpected keyword argument 'key'

Does anyone have ideas for how to fix this? So annoying that sort_index() - and sort_values() for that matter - don't have the key argument!!

Try sorting the columns with the sorted builtin function and passing the output to the dataframe for indexing. The following should serve as a working example:

import pandas as pd

records = [(2, 33, 23, 45), (3, 4, 2, 4), (4, 5, 7, 19), (4, 6, 71, 2)]

df = pd.DataFrame.from_records(records, columns = ('0:00', '23:40', '12:30', '11:23'))

# 0:00 23:40 12:30 11:23

# 0 2 33 23 45

# 1 3 4 2 4

# 2 4 5 7 19

# 3 4 6 71 2

df[sorted(df,key=pd.to_datetime)]

# 0:00 11:23 12:30 23:40

# 0 2 45 23 33

# 1 3 4 2 4

# 2 4 19 7 5

# 3 4 2 71 6

I hope this helps

I have a dataframe where the column names are times (0:00, 0:10, 0:20, ..., 23:50). Right now, they're sorted in a string order (so 0:00 is first and 9:50 is last) but I want to sort them after time (...
5. 使用 . sort_values () 查看按照值排序的数据 5.1. sort_values () 语法 语法:. sort_values (by, axis=0, ascending = Ture, inplace = Flase, kind = ‘quick sort ’, na_position=‘last’, ignore_index=False, key =None) 相对于 . sort _index()函数,此处多了一个 by
Python 内建的list. sort ()方法和 sort ed()函数都可以实现对列表进行排序。 一、list. sort ()方法:list. sort ( key =function, reverse=Boolean) list. sort ()方法是对列表list直接进行排序,排序完成后原来的list列表 的元素位置变化,按排序顺序排列。 可选的关键字参数reverse为布尔型数据,设置排序方向,默认值是False,按照升序排序。当reverse值可为True...
pandas是 python 环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式,这么说你可能无法从感性上认识它,举个例子,你大概用过Excel,而它也是一种数据组织和呈现的方式,简单说就是表格,而在在pandas 用DataFrame组织数据,如果你不print DataFrame,你看不到这些数据。 首先,是想用pandas操作“.csv"文件,当然有很多操作,用di...
在学习《利用 Python 进行数据分析》一书时出现 TypeError: sort _index() got an unexpected key word argument ‘by’ 问题原因分析:pandas模块更新了,对有些方法进行重写,参数发生改变。 解决方法:将 sort _index()改为 sort_values ()即可。
`df. sort_values ()` 是一个 Pandas DataFrame 对象的方法,用于按照一个或多个列的值对数据进行排序。它返回一个新的 DataFrame 对象,而不是修改原来的 DataFrame。 语法如下: ``` python df. sort_values (by, axis=0, ascending=True, inplace=False, ignore_index=False, key =None) 参数解释: - `by`:指定排序的列名或列名列表。 - `axis`:指定排序轴的方向。0表示按行排序,1表示按列排序。 - `ascending`:指定是否升序排列,默认为True。 - `inplace`:是否在原 DataFrame 上进行排序,默认为False(即返回一个新的 DataFrame)。 - `ignore_index`:是否忽略排序后的索引,并返回一个新的索引,默认为False。 - ` key `:指定一个函数用于排序,而不是默认的按值排序。 ``` python import pandas as pd data = {'name': ['Alice', 'Bob', 'Charlie', 'David', 'Emily'], 'age': [25, 18, 32, 45, 29], 'score': [80, 95, 70, 60, 85]} df = pd.DataFrame(data) # 按照 age 列升序排列 df_ sort ed = df. sort_values (by='age', ascending=True) print(df_ sort ed) 输出结果为: name age score 1 Bob 18 95 0 Alice 25 80 4 Emily 29 85 2 Charlie 32 70 3 David 45 60